of number of environments in SamplingConfig is used (values are now passed to factory method) This is clearer and removes the need to pass otherwise unnecessary configuration to environment factories at construction
86 lines
2.4 KiB
Python
86 lines
2.4 KiB
Python
#!/usr/bin/env python3
|
|
|
|
import datetime
|
|
import os
|
|
from collections.abc import Sequence
|
|
|
|
from jsonargparse import CLI
|
|
|
|
from examples.mujoco.mujoco_env import MujocoEnvFactory
|
|
from tianshou.highlevel.config import SamplingConfig
|
|
from tianshou.highlevel.experiment import (
|
|
ExperimentConfig,
|
|
SACExperimentBuilder,
|
|
)
|
|
from tianshou.highlevel.params.alpha import AutoAlphaFactoryDefault
|
|
from tianshou.highlevel.params.policy_params import SACParams
|
|
from tianshou.utils import logging
|
|
|
|
|
|
def main(
|
|
experiment_config: ExperimentConfig,
|
|
task: str = "Ant-v3",
|
|
buffer_size: int = 1000000,
|
|
hidden_sizes: Sequence[int] = (256, 256),
|
|
actor_lr: float = 1e-3,
|
|
critic_lr: float = 1e-3,
|
|
gamma: float = 0.99,
|
|
tau: float = 0.005,
|
|
alpha: float = 0.2,
|
|
auto_alpha: bool = False,
|
|
alpha_lr: float = 3e-4,
|
|
start_timesteps: int = 10000,
|
|
epoch: int = 200,
|
|
step_per_epoch: int = 5000,
|
|
step_per_collect: int = 1,
|
|
update_per_step: int = 1,
|
|
n_step: int = 1,
|
|
batch_size: int = 256,
|
|
training_num: int = 1,
|
|
test_num: int = 10,
|
|
):
|
|
now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
|
|
log_name = os.path.join(task, "sac", str(experiment_config.seed), now)
|
|
|
|
sampling_config = SamplingConfig(
|
|
num_epochs=epoch,
|
|
step_per_epoch=step_per_epoch,
|
|
num_train_envs=training_num,
|
|
num_test_envs=test_num,
|
|
buffer_size=buffer_size,
|
|
batch_size=batch_size,
|
|
step_per_collect=step_per_collect,
|
|
update_per_step=update_per_step,
|
|
start_timesteps=start_timesteps,
|
|
start_timesteps_random=True,
|
|
)
|
|
|
|
env_factory = MujocoEnvFactory(task, experiment_config.seed, obs_norm=False)
|
|
|
|
experiment = (
|
|
SACExperimentBuilder(env_factory, experiment_config, sampling_config)
|
|
.with_sac_params(
|
|
SACParams(
|
|
tau=tau,
|
|
gamma=gamma,
|
|
alpha=AutoAlphaFactoryDefault(lr=alpha_lr) if auto_alpha else alpha,
|
|
estimation_step=n_step,
|
|
actor_lr=actor_lr,
|
|
critic1_lr=critic_lr,
|
|
critic2_lr=critic_lr,
|
|
),
|
|
)
|
|
.with_actor_factory_default(
|
|
hidden_sizes,
|
|
continuous_unbounded=True,
|
|
continuous_conditioned_sigma=True,
|
|
)
|
|
.with_common_critic_factory_default(hidden_sizes)
|
|
.build()
|
|
)
|
|
experiment.run(log_name)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
logging.run_main(lambda: CLI(main))
|