37 lines
1.3 KiB
Python
37 lines
1.3 KiB
Python
import time
|
|
import numpy as np
|
|
|
|
|
|
def test_episode(policy, collector, test_fn, epoch, n_episode):
|
|
collector.reset_env()
|
|
collector.reset_buffer()
|
|
policy.eval()
|
|
if test_fn:
|
|
test_fn(epoch)
|
|
if collector.get_env_num() > 1 and np.isscalar(n_episode):
|
|
n = collector.get_env_num()
|
|
n_ = np.zeros(n) + n_episode // n
|
|
n_[:n_episode % n] += 1
|
|
n_episode = list(n_)
|
|
return collector.collect(n_episode=n_episode)
|
|
|
|
|
|
def gather_info(start_time, train_c, test_c, best_reward):
|
|
duration = time.time() - start_time
|
|
model_time = duration - train_c.collect_time - test_c.collect_time
|
|
train_speed = train_c.collect_step / (duration - test_c.collect_time)
|
|
test_speed = test_c.collect_step / test_c.collect_time
|
|
return {
|
|
'train_step': train_c.collect_step,
|
|
'train_episode': train_c.collect_episode,
|
|
'train_time/collector': f'{train_c.collect_time:.2f}s',
|
|
'train_time/model': f'{model_time:.2f}s',
|
|
'train_speed': f'{train_speed:.2f} step/s',
|
|
'test_step': test_c.collect_step,
|
|
'test_episode': test_c.collect_episode,
|
|
'test_time': f'{test_c.collect_time:.2f}s',
|
|
'test_speed': f'{test_speed:.2f} step/s',
|
|
'best_reward': best_reward,
|
|
'duration': f'{duration:.2f}s',
|
|
}
|