Tianshou/test/discrete/test_drqn.py
ChenDRAG 7036073649
Trainer refactor : some definition change (#293)
This PR focus on some definition change of trainer to make it more friendly to use and be consistent with typical usage in research papers, typically change `collect-per-step` to `step-per-collect`, add `update-per-step` / `episode-per-collect` accordingly, and modify the documentation.
2021-02-21 13:06:02 +08:00

115 lines
4.5 KiB
Python

import os
import gym
import torch
import pprint
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.policy import DQNPolicy
from tianshou.env import DummyVectorEnv
from tianshou.trainer import offpolicy_trainer
from tianshou.utils.net.common import Recurrent
from tianshou.data import Collector, VectorReplayBuffer
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='CartPole-v0')
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--eps-test', type=float, default=0.05)
parser.add_argument('--eps-train', type=float, default=0.1)
parser.add_argument('--buffer-size', type=int, default=20000)
parser.add_argument('--stack-num', type=int, default=4)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.95)
parser.add_argument('--n-step', type=int, default=4)
parser.add_argument('--target-update-freq', type=int, default=320)
parser.add_argument('--epoch', type=int, default=10)
parser.add_argument('--step-per-epoch', type=int, default=10000)
parser.add_argument('--update-per-step', type=float, default=0.1)
parser.add_argument('--step-per-collect', type=int, default=10)
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--layer-num', type=int, default=3)
parser.add_argument('--training-num', type=int, default=10)
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
args = parser.parse_known_args()[0]
return args
def test_drqn(args=get_args()):
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
# train_envs = gym.make(args.task)
# you can also use tianshou.env.SubprocVectorEnv
train_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
test_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Recurrent(args.layer_num, args.state_shape,
args.action_shape, args.device).to(args.device)
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
policy = DQNPolicy(
net, optim, args.gamma, args.n_step,
target_update_freq=args.target_update_freq)
# collector
buffer = VectorReplayBuffer(
args.buffer_size, buffer_num=len(train_envs),
stack_num=args.stack_num, ignore_obs_next=True)
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
# the stack_num is for RNN training: sample framestack obs
test_collector = Collector(policy, test_envs, exploration_noise=True)
# policy.set_eps(1)
train_collector.collect(n_step=args.batch_size * args.training_num)
# log
log_path = os.path.join(args.logdir, args.task, 'drqn')
writer = SummaryWriter(log_path)
def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
def stop_fn(mean_rewards):
return mean_rewards >= env.spec.reward_threshold
def train_fn(epoch, env_step):
policy.set_eps(args.eps_train)
def test_fn(epoch, env_step):
policy.set_eps(args.eps_test)
# trainer
result = offpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.step_per_collect, args.test_num,
args.batch_size, update_per_step=args.update_per_step,
train_fn=train_fn, test_fn=test_fn, stop_fn=stop_fn,
save_fn=save_fn, writer=writer)
assert stop_fn(result['best_reward'])
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
policy.eval()
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
if __name__ == '__main__':
test_drqn(get_args())