n+e 09692c84fe
fix numpy>=1.20 typing check (#323)
Change the behavior of to_numpy and to_torch: from now on, dict is automatically converted to Batch and list is automatically converted to np.ndarray (if an error occurs, raise the exception instead of converting each element in the list).
2021-03-30 16:06:03 +08:00

88 lines
3.6 KiB
Python

import torch
import numpy as np
from typing import Any, List, Tuple, Union, Optional
from tianshou.data import Batch, SegmentTree, to_numpy, ReplayBuffer
class PrioritizedReplayBuffer(ReplayBuffer):
"""Implementation of Prioritized Experience Replay. arXiv:1511.05952.
:param float alpha: the prioritization exponent.
:param float beta: the importance sample soft coefficient.
.. seealso::
Please refer to :class:`~tianshou.data.ReplayBuffer` for other APIs' usage.
"""
def __init__(self, size: int, alpha: float, beta: float, **kwargs: Any) -> None:
# will raise KeyError in PrioritizedVectorReplayBuffer
# super().__init__(size, **kwargs)
ReplayBuffer.__init__(self, size, **kwargs)
assert alpha > 0.0 and beta >= 0.0
self._alpha, self._beta = alpha, beta
self._max_prio = self._min_prio = 1.0
# save weight directly in this class instead of self._meta
self.weight = SegmentTree(size)
self.__eps = np.finfo(np.float32).eps.item()
self.options.update(alpha=alpha, beta=beta)
def init_weight(self, index: Union[int, np.ndarray]) -> None:
self.weight[index] = self._max_prio ** self._alpha
def update(self, buffer: ReplayBuffer) -> np.ndarray:
indices = super().update(buffer)
self.init_weight(indices)
return indices
def add(
self, batch: Batch, buffer_ids: Optional[Union[np.ndarray, List[int]]] = None
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
ptr, ep_rew, ep_len, ep_idx = super().add(batch, buffer_ids)
self.init_weight(ptr)
return ptr, ep_rew, ep_len, ep_idx
def sample_index(self, batch_size: int) -> np.ndarray:
if batch_size > 0 and len(self) > 0:
scalar = np.random.rand(batch_size) * self.weight.reduce()
return self.weight.get_prefix_sum_idx(scalar) # type: ignore
else:
return super().sample_index(batch_size)
def get_weight(self, index: Union[int, np.ndarray]) -> Union[float, np.ndarray]:
"""Get the importance sampling weight.
The "weight" in the returned Batch is the weight on loss function to de-bias
the sampling process (some transition tuples are sampled more often so their
losses are weighted less).
"""
# important sampling weight calculation
# original formula: ((p_j/p_sum*N)**(-beta))/((p_min/p_sum*N)**(-beta))
# simplified formula: (p_j/p_min)**(-beta)
return (self.weight[index] / self._min_prio) ** (-self._beta)
def update_weight(
self, index: np.ndarray, new_weight: Union[np.ndarray, torch.Tensor]
) -> None:
"""Update priority weight by index in this buffer.
:param np.ndarray index: index you want to update weight.
:param np.ndarray new_weight: new priority weight you want to update.
"""
weight = np.abs(to_numpy(new_weight)) + self.__eps
self.weight[index] = weight ** self._alpha
self._max_prio = max(self._max_prio, weight.max())
self._min_prio = min(self._min_prio, weight.min())
def __getitem__(self, index: Union[slice, int, List[int], np.ndarray]) -> Batch:
if isinstance(index, slice): # change slice to np array
# buffer[:] will get all available data
indice = self.sample_index(0) if index == slice(None) \
else self._indices[:len(self)][index]
else:
indice = index
batch = super().__getitem__(indice)
batch.weight = self.get_weight(indice)
return batch