Juno T d42a5fb354
Hindsight Experience Replay as a replay buffer (#753)
## implementation
I implemented HER solely as a replay buffer. It is done by temporarily
directly re-writing transitions storage (`self._meta`) during the
`sample_indices()` call. The original transitions are cached and will be
restored at the beginning of the next sampling or when other methods is
called. This will make sure that. for example, n-step return calculation
can be done without altering the policy.

There is also a problem with the original indices sampling. The sampled
indices are not guaranteed to be from different episodes. So I decided
to perform re-writing based on the episode. This guarantees that the
sampled transitions from the same episode will have the same re-written
goal. This also make the re-writing ratio calculation slightly differ
from the paper, but it won't be too different if there are many episodes
in the buffer.

In the current commit, HER replay buffer only support 'future' strategy
and online sampling. This is the best of HER in term of performance and
memory efficiency.

I also add a few more convenient replay buffers
(`HERVectorReplayBuffer`, `HERReplayBufferManager`), test env
(`MyGoalEnv`), gym wrapper (`TruncatedAsTerminated`), unit tests, and a
simple example (examples/offline/fetch_her_ddpg.py).

## verification
I have added unit tests for almost everything I have implemented.
HER replay buffer was also tested using DDPG on [`FetchReach-v3`
env](https://github.com/Farama-Foundation/Gymnasium-Robotics). I used
default DDPG parameters from mujoco example and didn't tune anything
further to get this good result! (train script:
examples/offline/fetch_her_ddpg.py).


![Screen Shot 2022-10-02 at 19 22
53](https://user-images.githubusercontent.com/42699114/193454066-0dd0c65c-fd5f-4587-8912-b441d39de88a.png)
2022-10-30 16:54:54 -07:00

298 lines
11 KiB
Python

from typing import List, Optional, Sequence, Tuple, Union
import numpy as np
from numba import njit
from tianshou.data import Batch, HERReplayBuffer, PrioritizedReplayBuffer, ReplayBuffer
from tianshou.data.batch import _alloc_by_keys_diff, _create_value
class ReplayBufferManager(ReplayBuffer):
"""ReplayBufferManager contains a list of ReplayBuffer with exactly the same \
configuration.
These replay buffers have contiguous memory layout, and the storage space each
buffer has is a shallow copy of the topmost memory.
:param buffer_list: a list of ReplayBuffer needed to be handled.
.. seealso::
Please refer to :class:`~tianshou.data.ReplayBuffer` for other APIs' usage.
"""
def __init__(
self, buffer_list: Union[List[ReplayBuffer], List[HERReplayBuffer]]
) -> None:
self.buffer_num = len(buffer_list)
self.buffers = np.array(buffer_list, dtype=object)
offset, size = [], 0
buffer_type = type(self.buffers[0])
kwargs = self.buffers[0].options
for buf in self.buffers:
assert buf._meta.is_empty()
assert isinstance(buf, buffer_type) and buf.options == kwargs
offset.append(size)
size += buf.maxsize
self._offset = np.array(offset)
self._extend_offset = np.array(offset + [size])
self._lengths = np.zeros_like(offset)
super().__init__(size=size, **kwargs)
self._compile()
self._meta: Batch
def _compile(self) -> None:
lens = last = index = np.array([0])
offset = np.array([0, 1])
done = np.array([False, False])
_prev_index(index, offset, done, last, lens)
_next_index(index, offset, done, last, lens)
def __len__(self) -> int:
return int(self._lengths.sum())
def reset(self, keep_statistics: bool = False) -> None:
self.last_index = self._offset.copy()
self._lengths = np.zeros_like(self._offset)
for buf in self.buffers:
buf.reset(keep_statistics=keep_statistics)
def _set_batch_for_children(self) -> None:
for offset, buf in zip(self._offset, self.buffers):
buf.set_batch(self._meta[offset:offset + buf.maxsize])
def set_batch(self, batch: Batch) -> None:
super().set_batch(batch)
self._set_batch_for_children()
def unfinished_index(self) -> np.ndarray:
return np.concatenate(
[
buf.unfinished_index() + offset
for offset, buf in zip(self._offset, self.buffers)
]
)
def prev(self, index: Union[int, np.ndarray]) -> np.ndarray:
if isinstance(index, (list, np.ndarray)):
return _prev_index(
np.asarray(index), self._extend_offset, self.done, self.last_index,
self._lengths
)
else:
return _prev_index(
np.array([index]), self._extend_offset, self.done, self.last_index,
self._lengths
)[0]
def next(self, index: Union[int, np.ndarray]) -> np.ndarray:
if isinstance(index, (list, np.ndarray)):
return _next_index(
np.asarray(index), self._extend_offset, self.done, self.last_index,
self._lengths
)
else:
return _next_index(
np.array([index]), self._extend_offset, self.done, self.last_index,
self._lengths
)[0]
def update(self, buffer: ReplayBuffer) -> np.ndarray:
"""The ReplayBufferManager cannot be updated by any buffer."""
raise NotImplementedError
def add(
self,
batch: Batch,
buffer_ids: Optional[Union[np.ndarray, List[int]]] = None
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
"""Add a batch of data into ReplayBufferManager.
Each of the data's length (first dimension) must equal to the length of
buffer_ids. By default buffer_ids is [0, 1, ..., buffer_num - 1].
Return (current_index, episode_reward, episode_length, episode_start_index). If
the episode is not finished, the return value of episode_length and
episode_reward is 0.
"""
# preprocess batch
new_batch = Batch()
for key in set(self._reserved_keys).intersection(batch.keys()):
new_batch.__dict__[key] = batch[key]
batch = new_batch
batch.__dict__["done"] = np.logical_or(batch.terminated, batch.truncated)
assert set(["obs", "act", "rew", "terminated", "truncated",
"done"]).issubset(batch.keys())
if self._save_only_last_obs:
batch.obs = batch.obs[:, -1]
if not self._save_obs_next:
batch.pop("obs_next", None)
elif self._save_only_last_obs:
batch.obs_next = batch.obs_next[:, -1]
# get index
if buffer_ids is None:
buffer_ids = np.arange(self.buffer_num)
ptrs, ep_lens, ep_rews, ep_idxs = [], [], [], []
for batch_idx, buffer_id in enumerate(buffer_ids):
ptr, ep_rew, ep_len, ep_idx = self.buffers[buffer_id]._add_index(
batch.rew[batch_idx], batch.done[batch_idx]
)
ptrs.append(ptr + self._offset[buffer_id])
ep_lens.append(ep_len)
ep_rews.append(ep_rew)
ep_idxs.append(ep_idx + self._offset[buffer_id])
self.last_index[buffer_id] = ptr + self._offset[buffer_id]
self._lengths[buffer_id] = len(self.buffers[buffer_id])
ptrs = np.array(ptrs)
try:
self._meta[ptrs] = batch
except ValueError:
batch.rew = batch.rew.astype(float)
batch.done = batch.done.astype(bool)
batch.terminated = batch.terminated.astype(bool)
batch.truncated = batch.truncated.astype(bool)
if self._meta.is_empty():
self._meta = _create_value( # type: ignore
batch, self.maxsize, stack=False)
else: # dynamic key pops up in batch
_alloc_by_keys_diff(self._meta, batch, self.maxsize, False)
self._set_batch_for_children()
self._meta[ptrs] = batch
return ptrs, np.array(ep_rews), np.array(ep_lens), np.array(ep_idxs)
def sample_indices(self, batch_size: int) -> np.ndarray:
if batch_size < 0:
return np.array([], int)
if self._sample_avail and self.stack_num > 1:
all_indices = np.concatenate(
[
buf.sample_indices(0) + offset
for offset, buf in zip(self._offset, self.buffers)
]
)
if batch_size == 0:
return all_indices
else:
return np.random.choice(all_indices, batch_size)
if batch_size == 0: # get all available indices
sample_num = np.zeros(self.buffer_num, int)
else:
buffer_idx = np.random.choice(
self.buffer_num, batch_size, p=self._lengths / self._lengths.sum()
)
sample_num = np.bincount(buffer_idx, minlength=self.buffer_num)
# avoid batch_size > 0 and sample_num == 0 -> get child's all data
sample_num[sample_num == 0] = -1
return np.concatenate(
[
buf.sample_indices(bsz) + offset
for offset, buf, bsz in zip(self._offset, self.buffers, sample_num)
]
)
class PrioritizedReplayBufferManager(PrioritizedReplayBuffer, ReplayBufferManager):
"""PrioritizedReplayBufferManager contains a list of PrioritizedReplayBuffer with \
exactly the same configuration.
These replay buffers have contiguous memory layout, and the storage space each
buffer has is a shallow copy of the topmost memory.
:param buffer_list: a list of PrioritizedReplayBuffer needed to be handled.
.. seealso::
Please refer to :class:`~tianshou.data.ReplayBuffer` for other APIs' usage.
"""
def __init__(self, buffer_list: Sequence[PrioritizedReplayBuffer]) -> None:
ReplayBufferManager.__init__(self, buffer_list) # type: ignore
kwargs = buffer_list[0].options
for buf in buffer_list:
del buf.weight
PrioritizedReplayBuffer.__init__(self, self.maxsize, **kwargs)
class HERReplayBufferManager(ReplayBufferManager):
"""HERReplayBufferManager contains a list of HERReplayBuffer with \
exactly the same configuration.
These replay buffers have contiguous memory layout, and the storage space each
buffer has is a shallow copy of the topmost memory.
:param buffer_list: a list of HERReplayBuffer needed to be handled.
.. seealso::
Please refer to :class:`~tianshou.data.ReplayBuffer` for other APIs' usage.
"""
def __init__(self, buffer_list: List[HERReplayBuffer]) -> None:
super().__init__(buffer_list)
def _restore_cache(self) -> None:
for buf in self.buffers:
buf._restore_cache()
def save_hdf5(self, path: str, compression: Optional[str] = None) -> None:
self._restore_cache()
return super().save_hdf5(path, compression)
def set_batch(self, batch: Batch) -> None:
self._restore_cache()
return super().set_batch(batch)
def update(self, buffer: Union["HERReplayBuffer", "ReplayBuffer"]) -> np.ndarray:
self._restore_cache()
return super().update(buffer)
def add(
self,
batch: Batch,
buffer_ids: Optional[Union[np.ndarray, List[int]]] = None
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
self._restore_cache()
return super().add(batch, buffer_ids)
@njit
def _prev_index(
index: np.ndarray,
offset: np.ndarray,
done: np.ndarray,
last_index: np.ndarray,
lengths: np.ndarray,
) -> np.ndarray:
index = index % offset[-1]
prev_index = np.zeros_like(index)
for start, end, cur_len, last in zip(offset[:-1], offset[1:], lengths, last_index):
mask = (start <= index) & (index < end)
cur_len = max(1, cur_len)
if np.sum(mask) > 0:
subind = index[mask]
subind = (subind - start - 1) % cur_len
end_flag = done[subind + start] | (subind + start == last)
prev_index[mask] = (subind + end_flag) % cur_len + start
return prev_index
@njit
def _next_index(
index: np.ndarray,
offset: np.ndarray,
done: np.ndarray,
last_index: np.ndarray,
lengths: np.ndarray,
) -> np.ndarray:
index = index % offset[-1]
next_index = np.zeros_like(index)
for start, end, cur_len, last in zip(offset[:-1], offset[1:], lengths, last_index):
mask = (start <= index) & (index < end)
cur_len = max(1, cur_len)
if np.sum(mask) > 0:
subind = index[mask]
end_flag = done[subind] | (subind == last)
next_index[mask] = (subind - start + 1 - end_flag) % cur_len + start
return next_index