2017-12-28 15:52:31 +08:00

199 lines
7.9 KiB
Python

import numpy as np
import math
import time
c_puct = 5
class MCTSNode(object):
def __init__(self, parent, action, state, action_num, prior, inverse=False):
self.parent = parent
self.action = action
self.children = {}
self.state = state
self.action_num = action_num
self.prior = np.array(prior).reshape(-1)
self.inverse = inverse
def selection(self, simulator):
raise NotImplementedError("Need to implement function selection")
def backpropagation(self, action):
raise NotImplementedError("Need to implement function backpropagation")
def valid_mask(self, simulator):
pass
class UCTNode(MCTSNode):
def __init__(self, parent, action, state, action_num, prior, mcts, inverse=False):
super(UCTNode, self).__init__(parent, action, state, action_num, prior, inverse)
self.Q = np.zeros([action_num])
self.W = np.zeros([action_num])
self.N = np.zeros([action_num])
self.c_puct = c_puct
self.ucb = self.Q + self.c_puct * self.prior * math.sqrt(np.sum(self.N)) / (self.N + 1)
self.mask = None
self.elapse_time = 0
self.mcts = mcts
def selection(self, simulator):
head = time.time()
self.valid_mask(simulator)
self.mcts.valid_mask_time += time.time() - head
action = np.argmax(self.ucb)
if action in self.children.keys():
self.mcts.state_selection_time += time.time() - head
return self.children[action].selection(simulator)
else:
self.children[action] = ActionNode(self, action, mcts=self.mcts)
self.mcts.state_selection_time += time.time() - head
return self.children[action].selection(simulator)
def backpropagation(self, action):
action = int(action)
self.N[action] += 1
self.W[action] += self.children[action].reward
for i in range(self.action_num):
if self.N[i] != 0:
self.Q[i] = (self.W[i] + 0.) / self.N[i]
self.ucb = self.Q + c_puct * self.prior * math.sqrt(np.sum(self.N)) / (self.N + 1.)
if self.parent is not None:
if self.inverse:
self.parent.backpropagation(-self.children[action].reward)
else:
self.parent.backpropagation(self.children[action].reward)
def valid_mask(self, simulator):
# let all invalid actions be illegal in mcts
if not hasattr(simulator, 'simulate_get_mask'):
pass
else:
if self.mask is None:
self.mask = simulator.simulate_get_mask(self.state, range(self.action_num))
self.ucb[self.mask] = -float("Inf")
# Code reserved for Thompson Sampling
class TSNode(MCTSNode):
def __init__(self, parent, action, state, action_num, prior, method="Gaussian", inverse=False):
super(TSNode, self).__init__(parent, action, state, action_num, prior, inverse)
if method == "Beta":
self.alpha = np.ones([action_num])
self.beta = np.ones([action_num])
if method == "Gaussian":
self.mu = np.zeros([action_num])
self.sigma = np.zeros([action_num])
class ActionNode(object):
def __init__(self, parent, action, mcts):
self.parent = parent
self.action = action
self.children = {}
self.next_state = None
self.next_state_hashable = None
self.state_type = None
self.reward = 0
self.mcts = mcts
def selection(self, simulator):
head = time.time()
self.next_state, self.reward = simulator.simulate_step_forward(self.parent.state, self.action)
self.mcts.simulate_sf_time += time.time() - head
if self.next_state is None: # next_state is None means that self.parent.state is the terminate state
self.mcts.action_selection_time += time.time() - head
return self
head = time.time()
self.next_state_hashable = simulator.simulate_hashable_conversion(self.next_state)
self.mcts.hash_time += time.time() - head
if self.next_state_hashable in self.children.keys(): # next state has already visited before
self.mcts.action_selection_time += time.time() - head
return self.children[self.next_state_hashable].selection(simulator)
else: # next state is a new state never seen before
self.mcts.action_selection_time += time.time() - head
return self
def expansion(self, prior, action_num):
self.children[self.next_state_hashable] = UCTNode(self, self.action, self.next_state, action_num, prior,
mcts=self.mcts, inverse=self.parent.inverse)
def backpropagation(self, value):
self.reward += value
self.parent.backpropagation(self.action)
class MCTS(object):
def __init__(self, simulator, evaluator, start_state, action_num, method="UCT",
role="unknown", debug=False, inverse=False):
self.simulator = simulator
self.evaluator = evaluator
self.role = role
self.debug = debug
prior, _ = self.evaluator(start_state)
self.action_num = action_num
if method == "":
self.root = start_state
if method == "UCT":
self.root = UCTNode(None, None, start_state, action_num, prior, mcts=self, inverse=inverse)
if method == "TS":
self.root = TSNode(None, None, start_state, action_num, prior, inverse=inverse)
self.inverse = inverse
# time spend on each step
self.selection_time = 0
self.expansion_time = 0
self.backpropagation_time = 0
self.action_selection_time = 0
self.state_selection_time = 0
self.simulate_sf_time = 0
self.valid_mask_time = 0
self.hash_time = 0
def search(self, max_step=None, max_time=None):
step = 0
start_time = time.time()
if max_step is None:
max_step = int("Inf")
if max_time is None:
max_time = float("Inf")
if max_step is None and max_time is None:
raise ValueError("Need a stop criteria!")
while step < max_step and time.time() - start_time < max_step:
sel_time, exp_time, back_time = self._expand()
self.selection_time += sel_time
self.expansion_time += exp_time
self.backpropagation_time += back_time
step += 1
if self.debug:
file = open("mcts_profiling.log", "a")
file.write("[" + str(self.role) + "]"
+ " sel " + '%.3f' % self.selection_time + " "
+ " sel_sta " + '%.3f' % self.state_selection_time + " "
+ " valid " + '%.3f' % self.valid_mask_time + " "
+ " sel_act " + '%.3f' % self.action_selection_time + " "
+ " hash " + '%.3f' % self.hash_time + " "
+ " step forward " + '%.3f' % self.simulate_sf_time + " "
+ " expansion " + '%.3f' % self.expansion_time + " "
+ " backprop " + '%.3f' % self.backpropagation_time + " "
+ "\n")
file.close()
def _expand(self):
t0 = time.time()
next_action = self.root.selection(self.simulator)
t1 = time.time()
# next_action.next_state is None means the parent state node of next_action is a terminate node
if next_action.next_state is not None:
prior, value = self.evaluator(next_action.next_state)
next_action.expansion(prior, self.action_num)
else:
value = 0
t2 = time.time()
if self.inverse:
next_action.backpropagation(-value + 0.)
else:
next_action.backpropagation(value + 0.)
t3 = time.time()
return t1 - t0, t2 - t1, t3 - t2
if __name__ == "__main__":
pass