Improves typing in examples and tests, towards mypy passing there. Introduces the SpaceInfo utility
		
			
				
	
	
		
			270 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			270 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python3
 | |
| 
 | |
| import argparse
 | |
| import datetime
 | |
| import os
 | |
| import pprint
 | |
| from typing import SupportsFloat
 | |
| 
 | |
| import d4rl
 | |
| import gymnasium as gym
 | |
| import numpy as np
 | |
| import torch
 | |
| from torch import nn
 | |
| from torch.distributions import Distribution, Independent, Normal
 | |
| from torch.optim.lr_scheduler import LambdaLR
 | |
| from torch.utils.tensorboard import SummaryWriter
 | |
| 
 | |
| from tianshou.data import Batch, Collector, ReplayBuffer, VectorReplayBuffer
 | |
| from tianshou.env import SubprocVectorEnv, VectorEnvNormObs
 | |
| from tianshou.policy import GAILPolicy
 | |
| from tianshou.policy.base import BasePolicy
 | |
| from tianshou.trainer import OnpolicyTrainer
 | |
| from tianshou.utils import TensorboardLogger
 | |
| from tianshou.utils.net.common import ActorCritic, Net
 | |
| from tianshou.utils.net.continuous import ActorProb, Critic
 | |
| from tianshou.utils.space_info import SpaceInfo
 | |
| 
 | |
| 
 | |
| class NoRewardEnv(gym.RewardWrapper):
 | |
|     """sets the reward to 0.
 | |
| 
 | |
|     :param gym.Env env: the environment to wrap.
 | |
|     """
 | |
| 
 | |
|     def __init__(self, env: gym.Env) -> None:
 | |
|         super().__init__(env)
 | |
| 
 | |
|     def reward(self, reward: SupportsFloat) -> np.ndarray:
 | |
|         """Set reward to 0."""
 | |
|         return np.zeros_like(reward)
 | |
| 
 | |
| 
 | |
| def get_args() -> argparse.Namespace:
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser.add_argument("--task", type=str, default="HalfCheetah-v2")
 | |
|     parser.add_argument("--seed", type=int, default=0)
 | |
|     parser.add_argument("--expert-data-task", type=str, default="halfcheetah-expert-v2")
 | |
|     parser.add_argument("--buffer-size", type=int, default=4096)
 | |
|     parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64])
 | |
|     parser.add_argument("--lr", type=float, default=3e-4)
 | |
|     parser.add_argument("--disc-lr", type=float, default=2.5e-5)
 | |
|     parser.add_argument("--gamma", type=float, default=0.99)
 | |
|     parser.add_argument("--epoch", type=int, default=100)
 | |
|     parser.add_argument("--step-per-epoch", type=int, default=30000)
 | |
|     parser.add_argument("--step-per-collect", type=int, default=2048)
 | |
|     parser.add_argument("--repeat-per-collect", type=int, default=10)
 | |
|     parser.add_argument("--disc-update-num", type=int, default=2)
 | |
|     parser.add_argument("--batch-size", type=int, default=64)
 | |
|     parser.add_argument("--training-num", type=int, default=64)
 | |
|     parser.add_argument("--test-num", type=int, default=10)
 | |
|     # ppo special
 | |
|     parser.add_argument("--rew-norm", type=int, default=True)
 | |
|     # In theory, `vf-coef` will not make any difference if using Adam optimizer.
 | |
|     parser.add_argument("--vf-coef", type=float, default=0.25)
 | |
|     parser.add_argument("--ent-coef", type=float, default=0.001)
 | |
|     parser.add_argument("--gae-lambda", type=float, default=0.95)
 | |
|     parser.add_argument("--bound-action-method", type=str, default="clip")
 | |
|     parser.add_argument("--lr-decay", type=int, default=True)
 | |
|     parser.add_argument("--max-grad-norm", type=float, default=0.5)
 | |
|     parser.add_argument("--eps-clip", type=float, default=0.2)
 | |
|     parser.add_argument("--dual-clip", type=float, default=None)
 | |
|     parser.add_argument("--value-clip", type=int, default=0)
 | |
|     parser.add_argument("--norm-adv", type=int, default=0)
 | |
|     parser.add_argument("--recompute-adv", type=int, default=1)
 | |
|     parser.add_argument("--logdir", type=str, default="log")
 | |
|     parser.add_argument("--render", type=float, default=0.0)
 | |
|     parser.add_argument(
 | |
|         "--device",
 | |
|         type=str,
 | |
|         default="cuda" if torch.cuda.is_available() else "cpu",
 | |
|     )
 | |
|     parser.add_argument("--resume-path", type=str, default=None)
 | |
|     parser.add_argument(
 | |
|         "--watch",
 | |
|         default=False,
 | |
|         action="store_true",
 | |
|         help="watch the play of pre-trained policy only",
 | |
|     )
 | |
|     return parser.parse_args()
 | |
| 
 | |
| 
 | |
| def test_gail(args: argparse.Namespace = get_args()) -> None:
 | |
|     env = gym.make(args.task)
 | |
|     space_info = SpaceInfo.from_env(env)
 | |
|     args.state_shape = space_info.observation_info.obs_shape
 | |
|     args.action_shape = space_info.action_info.action_shape
 | |
|     args.max_action = space_info.action_info.max_action
 | |
|     print("Observations shape:", args.state_shape)
 | |
|     print("Actions shape:", args.action_shape)
 | |
|     print("Action range:", args.min_action, args.max_action)
 | |
|     # train_envs = gym.make(args.task)
 | |
|     train_envs = SubprocVectorEnv(
 | |
|         [lambda: NoRewardEnv(gym.make(args.task)) for _ in range(args.training_num)],
 | |
|     )
 | |
|     train_envs = VectorEnvNormObs(train_envs)
 | |
|     # test_envs = gym.make(args.task)
 | |
|     test_envs = SubprocVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
 | |
|     test_envs = VectorEnvNormObs(test_envs, update_obs_rms=False)
 | |
|     test_envs.set_obs_rms(train_envs.get_obs_rms())
 | |
| 
 | |
|     # seed
 | |
|     np.random.seed(args.seed)
 | |
|     torch.manual_seed(args.seed)
 | |
|     train_envs.seed(args.seed)
 | |
|     test_envs.seed(args.seed)
 | |
|     # model
 | |
|     net_a = Net(
 | |
|         args.state_shape,
 | |
|         hidden_sizes=args.hidden_sizes,
 | |
|         activation=nn.Tanh,
 | |
|         device=args.device,
 | |
|     )
 | |
|     actor = ActorProb(net_a, args.action_shape, unbounded=True, device=args.device).to(args.device)
 | |
|     net_c = Net(
 | |
|         args.state_shape,
 | |
|         hidden_sizes=args.hidden_sizes,
 | |
|         activation=nn.Tanh,
 | |
|         device=args.device,
 | |
|     )
 | |
|     critic = Critic(net_c, device=args.device).to(args.device)
 | |
|     torch.nn.init.constant_(actor.sigma_param, -0.5)
 | |
|     for m in list(actor.modules()) + list(critic.modules()):
 | |
|         if isinstance(m, torch.nn.Linear):
 | |
|             # orthogonal initialization
 | |
|             torch.nn.init.orthogonal_(m.weight, gain=np.sqrt(2))
 | |
|             torch.nn.init.zeros_(m.bias)
 | |
|     # do last policy layer scaling, this will make initial actions have (close to)
 | |
|     # 0 mean and std, and will help boost performances,
 | |
|     # see https://arxiv.org/abs/2006.05990, Fig.24 for details
 | |
|     for m in actor.mu.modules():
 | |
|         if isinstance(m, torch.nn.Linear):
 | |
|             torch.nn.init.zeros_(m.bias)
 | |
|             m.weight.data.copy_(0.01 * m.weight.data)
 | |
| 
 | |
|     optim = torch.optim.Adam(ActorCritic(actor, critic).parameters(), lr=args.lr)
 | |
|     # discriminator
 | |
|     net_d = Net(
 | |
|         args.state_shape,
 | |
|         action_shape=args.action_shape,
 | |
|         hidden_sizes=args.hidden_sizes,
 | |
|         activation=nn.Tanh,
 | |
|         device=args.device,
 | |
|         concat=True,
 | |
|     )
 | |
|     disc_net = Critic(net_d, device=args.device).to(args.device)
 | |
|     for m in disc_net.modules():
 | |
|         if isinstance(m, torch.nn.Linear):
 | |
|             # orthogonal initialization
 | |
|             torch.nn.init.orthogonal_(m.weight, gain=np.sqrt(2))
 | |
|             torch.nn.init.zeros_(m.bias)
 | |
|     disc_optim = torch.optim.Adam(disc_net.parameters(), lr=args.disc_lr)
 | |
| 
 | |
|     lr_scheduler = None
 | |
|     if args.lr_decay:
 | |
|         # decay learning rate to 0 linearly
 | |
|         max_update_num = np.ceil(args.step_per_epoch / args.step_per_collect) * args.epoch
 | |
| 
 | |
|         lr_scheduler = LambdaLR(optim, lr_lambda=lambda epoch: 1 - epoch / max_update_num)
 | |
| 
 | |
|     def dist(*logits: torch.Tensor) -> Distribution:
 | |
|         return Independent(Normal(*logits), 1)
 | |
| 
 | |
|     # expert replay buffer
 | |
|     dataset = d4rl.qlearning_dataset(gym.make(args.expert_data_task))
 | |
|     dataset_size = dataset["rewards"].size
 | |
| 
 | |
|     print("dataset_size", dataset_size)
 | |
|     expert_buffer = ReplayBuffer(dataset_size)
 | |
| 
 | |
|     for i in range(dataset_size):
 | |
|         expert_buffer.add(
 | |
|             Batch(
 | |
|                 obs=dataset["observations"][i],
 | |
|                 act=dataset["actions"][i],
 | |
|                 rew=dataset["rewards"][i],
 | |
|                 done=dataset["terminals"][i],
 | |
|                 obs_next=dataset["next_observations"][i],
 | |
|             ),
 | |
|         )
 | |
|     print("dataset loaded")
 | |
| 
 | |
|     policy: GAILPolicy = GAILPolicy(
 | |
|         actor=actor,
 | |
|         critic=critic,
 | |
|         optim=optim,
 | |
|         dist_fn=dist,
 | |
|         expert_buffer=expert_buffer,
 | |
|         disc_net=disc_net,
 | |
|         disc_optim=disc_optim,
 | |
|         disc_update_num=args.disc_update_num,
 | |
|         discount_factor=args.gamma,
 | |
|         gae_lambda=args.gae_lambda,
 | |
|         max_grad_norm=args.max_grad_norm,
 | |
|         vf_coef=args.vf_coef,
 | |
|         ent_coef=args.ent_coef,
 | |
|         reward_normalization=args.rew_norm,
 | |
|         action_scaling=True,
 | |
|         action_bound_method=args.bound_action_method,
 | |
|         lr_scheduler=lr_scheduler,
 | |
|         action_space=env.action_space,
 | |
|         eps_clip=args.eps_clip,
 | |
|         value_clip=args.value_clip,
 | |
|         dual_clip=args.dual_clip,
 | |
|         advantage_normalization=args.norm_adv,
 | |
|         recompute_advantage=args.recompute_adv,
 | |
|     )
 | |
| 
 | |
|     # load a previous policy
 | |
|     if args.resume_path:
 | |
|         policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
 | |
|         print("Loaded agent from: ", args.resume_path)
 | |
| 
 | |
|     # collector
 | |
|     buffer: ReplayBuffer
 | |
|     if args.training_num > 1:
 | |
|         buffer = VectorReplayBuffer(args.buffer_size, len(train_envs))
 | |
|     else:
 | |
|         buffer = ReplayBuffer(args.buffer_size)
 | |
|     train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
 | |
|     test_collector = Collector(policy, test_envs)
 | |
|     # log
 | |
|     t0 = datetime.datetime.now().strftime("%m%d_%H%M%S")
 | |
|     log_file = f'seed_{args.seed}_{t0}-{args.task.replace("-", "_")}_gail'
 | |
|     log_path = os.path.join(args.logdir, args.task, "gail", log_file)
 | |
|     writer = SummaryWriter(log_path)
 | |
|     writer.add_text("args", str(args))
 | |
|     logger = TensorboardLogger(writer, update_interval=100, train_interval=100)
 | |
| 
 | |
|     def save_best_fn(policy: BasePolicy) -> None:
 | |
|         torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
 | |
| 
 | |
|     if not args.watch:
 | |
|         # trainer
 | |
|         result = OnpolicyTrainer(
 | |
|             policy=policy,
 | |
|             train_collector=train_collector,
 | |
|             test_collector=test_collector,
 | |
|             max_epoch=args.epoch,
 | |
|             step_per_epoch=args.step_per_epoch,
 | |
|             repeat_per_collect=args.repeat_per_collect,
 | |
|             episode_per_test=args.test_num,
 | |
|             batch_size=args.batch_size,
 | |
|             step_per_collect=args.step_per_collect,
 | |
|             save_best_fn=save_best_fn,
 | |
|             logger=logger,
 | |
|             test_in_train=False,
 | |
|         ).run()
 | |
|         pprint.pprint(result)
 | |
| 
 | |
|     # Let's watch its performance!
 | |
|     policy.eval()
 | |
|     test_envs.seed(args.seed)
 | |
|     test_collector.reset()
 | |
|     collector_stats = test_collector.collect(n_episode=args.test_num, render=args.render)
 | |
|     print(collector_stats)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     test_gail()
 |