This PR does the following: - improvement: dramatic reduce of the call to _is_batch_set - bugfix: list(Batch()) fail; Batch(a=[torch.ones(3), torch.ones(3)]) fail; - misc: add type check for each element rather than the first element; add test case; _create_value with torch.Tensor does not have np.object type;
58 lines
1.9 KiB
Python
58 lines
1.9 KiB
Python
import torch
|
|
import numpy as np
|
|
from numbers import Number
|
|
from typing import Union, Optional
|
|
|
|
from tianshou.data import Batch
|
|
|
|
|
|
def to_numpy(x: Union[
|
|
torch.Tensor, dict, Batch, np.ndarray]) -> Union[
|
|
dict, Batch, np.ndarray]:
|
|
"""Return an object without torch.Tensor."""
|
|
if isinstance(x, torch.Tensor):
|
|
x = x.detach().cpu().numpy()
|
|
elif isinstance(x, dict):
|
|
for k, v in x.items():
|
|
x[k] = to_numpy(v)
|
|
elif isinstance(x, Batch):
|
|
x.to_numpy()
|
|
return x
|
|
|
|
|
|
def to_torch(x: Union[torch.Tensor, dict, Batch, np.ndarray],
|
|
dtype: Optional[torch.dtype] = None,
|
|
device: Union[str, int, torch.device] = 'cpu'
|
|
) -> Union[dict, Batch, torch.Tensor]:
|
|
"""Return an object without np.ndarray."""
|
|
if isinstance(x, torch.Tensor):
|
|
if dtype is not None:
|
|
x = x.type(dtype)
|
|
x = x.to(device)
|
|
elif isinstance(x, dict):
|
|
for k, v in x.items():
|
|
x[k] = to_torch(v, dtype, device)
|
|
elif isinstance(x, Batch):
|
|
x.to_torch(dtype, device)
|
|
elif isinstance(x, (np.number, np.bool_, Number)):
|
|
x = to_torch(np.asanyarray(x), dtype, device)
|
|
elif isinstance(x, list) and len(x) > 0 and \
|
|
all(isinstance(e, (np.number, np.bool_, Number)) for e in x):
|
|
x = to_torch(np.asanyarray(x), dtype, device)
|
|
elif isinstance(x, np.ndarray) and \
|
|
isinstance(x.item(0), (np.number, np.bool_, Number)):
|
|
x = torch.from_numpy(x).to(device)
|
|
if dtype is not None:
|
|
x = x.type(dtype)
|
|
return x
|
|
|
|
|
|
def to_torch_as(x: Union[torch.Tensor, dict, Batch, np.ndarray],
|
|
y: torch.Tensor
|
|
) -> Union[dict, Batch, torch.Tensor]:
|
|
"""Return an object without np.ndarray. Same as
|
|
``to_torch(x, dtype=y.dtype, device=y.device)``.
|
|
"""
|
|
assert isinstance(y, torch.Tensor)
|
|
return to_torch(x, dtype=y.dtype, device=y.device)
|