Tianshou/test/offline/gather_pendulum_data.py
ChenDRAG 1423eeb3b2
Add warnings for duplicate usage of action-bounded actor and action scaling method (#850)
- Fix the current bug discussed in #844 in `test_ppo.py`.
- Add warning for `ActorProb ` if both `max_action ` and
`unbounded=True` are used for model initializations.
- Add warning for PGpolicy and DDPGpolicy if they find duplicate usage
of action-bounded actor and action scaling method.
2023-04-23 16:03:31 -07:00

179 lines
6.4 KiB
Python

import argparse
import os
import pickle
import gymnasium as gym
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import DummyVectorEnv
from tianshou.policy import SACPolicy
from tianshou.trainer import offpolicy_trainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import ActorProb, Critic
def expert_file_name():
return os.path.join(os.path.dirname(__file__), "expert_SAC_Pendulum-v1.pkl")
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='Pendulum-v1')
parser.add_argument('--reward-threshold', type=float, default=None)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--buffer-size', type=int, default=20000)
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[128, 128])
parser.add_argument('--actor-lr', type=float, default=1e-3)
parser.add_argument('--critic-lr', type=float, default=1e-3)
parser.add_argument('--epoch', type=int, default=7)
parser.add_argument('--step-per-epoch', type=int, default=8000)
parser.add_argument('--batch-size', type=int, default=256)
parser.add_argument('--training-num', type=int, default=10)
parser.add_argument('--test-num', type=int, default=10)
parser.add_argument('--step-per-collect', type=int, default=10)
parser.add_argument('--update-per-step', type=float, default=0.125)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument("--gamma", default=0.99)
parser.add_argument("--tau", default=0.005)
parser.add_argument(
'--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
)
parser.add_argument('--resume-path', type=str, default=None)
parser.add_argument(
'--watch',
default=False,
action='store_true',
help='watch the play of pre-trained policy only'
)
# sac:
parser.add_argument('--alpha', type=float, default=0.2)
parser.add_argument('--auto-alpha', type=int, default=1)
parser.add_argument('--alpha-lr', type=float, default=3e-4)
parser.add_argument('--rew-norm', action="store_true", default=False)
parser.add_argument('--n-step', type=int, default=3)
parser.add_argument("--save-buffer-name", type=str, default=expert_file_name())
args = parser.parse_known_args()[0]
return args
def gather_data():
"""Return expert buffer data."""
args = get_args()
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
if args.reward_threshold is None:
default_reward_threshold = {"Pendulum-v0": -250, "Pendulum-v1": -250}
args.reward_threshold = default_reward_threshold.get(
args.task, env.spec.reward_threshold
)
# you can also use tianshou.env.SubprocVectorEnv
# train_envs = gym.make(args.task)
train_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)]
)
# test_envs = gym.make(args.task)
test_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)]
)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
actor = ActorProb(
net,
args.action_shape,
device=args.device,
unbounded=True,
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
net_c1 = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True,
device=args.device,
)
critic1 = Critic(net_c1, device=args.device).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
net_c2 = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True,
device=args.device,
)
critic2 = Critic(net_c2, device=args.device).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
if args.auto_alpha:
target_entropy = -np.prod(env.action_space.shape)
log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
args.alpha = (target_entropy, log_alpha, alpha_optim)
policy = SACPolicy(
actor,
actor_optim,
critic1,
critic1_optim,
critic2,
critic2_optim,
tau=args.tau,
gamma=args.gamma,
alpha=args.alpha,
reward_normalization=args.rew_norm,
estimation_step=args.n_step,
action_space=env.action_space,
)
# collector
buffer = VectorReplayBuffer(args.buffer_size, len(train_envs))
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
test_collector = Collector(policy, test_envs)
# train_collector.collect(n_step=args.buffer_size)
# log
log_path = os.path.join(args.logdir, args.task, 'sac')
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer)
def save_best_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
def stop_fn(mean_rewards):
return mean_rewards >= args.reward_threshold
# trainer
offpolicy_trainer(
policy,
train_collector,
test_collector,
args.epoch,
args.step_per_epoch,
args.step_per_collect,
args.test_num,
args.batch_size,
update_per_step=args.update_per_step,
save_best_fn=save_best_fn,
stop_fn=stop_fn,
logger=logger,
)
train_collector.reset()
result = train_collector.collect(n_step=args.buffer_size)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
if args.save_buffer_name.endswith(".hdf5"):
buffer.save_hdf5(args.save_buffer_name)
else:
pickle.dump(buffer, open(args.save_buffer_name, "wb"))
return buffer