This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
657 lines
26 KiB
Python
657 lines
26 KiB
Python
import time
|
|
import warnings
|
|
from collections.abc import Callable
|
|
from dataclasses import dataclass
|
|
from typing import Any, cast
|
|
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
import torch
|
|
|
|
from tianshou.data import (
|
|
Batch,
|
|
CachedReplayBuffer,
|
|
PrioritizedReplayBuffer,
|
|
ReplayBuffer,
|
|
ReplayBufferManager,
|
|
SequenceSummaryStats,
|
|
VectorReplayBuffer,
|
|
to_numpy,
|
|
)
|
|
from tianshou.data.batch import alloc_by_keys_diff
|
|
from tianshou.data.types import RolloutBatchProtocol
|
|
from tianshou.env import BaseVectorEnv, DummyVectorEnv
|
|
from tianshou.policy import BasePolicy
|
|
|
|
|
|
@dataclass(kw_only=True)
|
|
class CollectStatsBase:
|
|
"""The most basic stats, often used for offline learning."""
|
|
|
|
n_collected_episodes: int = 0
|
|
"""The number of collected episodes."""
|
|
n_collected_steps: int = 0
|
|
"""The number of collected steps."""
|
|
|
|
|
|
@dataclass(kw_only=True)
|
|
class CollectStats(CollectStatsBase):
|
|
"""A data structure for storing the statistics of rollouts."""
|
|
|
|
collect_time: float = 0.0
|
|
"""The time for collecting transitions."""
|
|
collect_speed: float = 0.0
|
|
"""The speed of collecting (env_step per second)."""
|
|
returns: np.ndarray
|
|
"""The collected episode returns."""
|
|
returns_stat: SequenceSummaryStats | None # can be None if no episode ends during collect step
|
|
"""Stats of the collected returns."""
|
|
lens: np.ndarray
|
|
"""The collected episode lengths."""
|
|
lens_stat: SequenceSummaryStats | None # can be None if no episode ends during collect step
|
|
"""Stats of the collected episode lengths."""
|
|
|
|
|
|
class Collector:
|
|
"""Collector enables the policy to interact with different types of envs with exact number of steps or episodes.
|
|
|
|
:param policy: an instance of the :class:`~tianshou.policy.BasePolicy` class.
|
|
:param env: a ``gym.Env`` environment or an instance of the
|
|
:class:`~tianshou.env.BaseVectorEnv` class.
|
|
:param buffer: an instance of the :class:`~tianshou.data.ReplayBuffer` class.
|
|
If set to None, it will not store the data. Default to None.
|
|
:param function preprocess_fn: a function called before the data has been added to
|
|
the buffer, see issue #42 and :ref:`preprocess_fn`. Default to None.
|
|
:param exploration_noise: determine whether the action needs to be modified
|
|
with corresponding policy's exploration noise. If so, "policy.
|
|
exploration_noise(act, batch)" will be called automatically to add the
|
|
exploration noise into action. Default to False.
|
|
|
|
The "preprocess_fn" is a function called before the data has been added to the
|
|
buffer with batch format. It will receive only "obs" and "env_id" when the
|
|
collector resets the environment, and will receive the keys "obs_next", "rew",
|
|
"terminated", "truncated, "info", "policy" and "env_id" in a normal env step.
|
|
Alternatively, it may also accept the keys "obs_next", "rew", "done", "info",
|
|
"policy" and "env_id".
|
|
It returns either a dict or a :class:`~tianshou.data.Batch` with the modified
|
|
keys and values. Examples are in "test/base/test_collector.py".
|
|
|
|
.. note::
|
|
|
|
Please make sure the given environment has a time limitation if using n_episode
|
|
collect option.
|
|
|
|
.. note::
|
|
|
|
In past versions of Tianshou, the replay buffer that was passed to `__init__`
|
|
was automatically reset. This is not done in the current implementation.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
policy: BasePolicy,
|
|
env: gym.Env | BaseVectorEnv,
|
|
buffer: ReplayBuffer | None = None,
|
|
preprocess_fn: Callable[..., RolloutBatchProtocol] | None = None,
|
|
exploration_noise: bool = False,
|
|
) -> None:
|
|
super().__init__()
|
|
if isinstance(env, gym.Env) and not hasattr(env, "__len__"):
|
|
warnings.warn("Single environment detected, wrap to DummyVectorEnv.")
|
|
self.env = DummyVectorEnv([lambda: env])
|
|
else:
|
|
self.env = env # type: ignore
|
|
self.env_num = len(self.env)
|
|
self.exploration_noise = exploration_noise
|
|
self.buffer: ReplayBuffer
|
|
self._assign_buffer(buffer)
|
|
self.policy = policy
|
|
self.preprocess_fn = preprocess_fn
|
|
self._action_space = self.env.action_space
|
|
self.data: RolloutBatchProtocol
|
|
# avoid creating attribute outside __init__
|
|
self.reset(False)
|
|
|
|
def _assign_buffer(self, buffer: ReplayBuffer | None) -> None:
|
|
"""Check if the buffer matches the constraint."""
|
|
if buffer is None:
|
|
buffer = VectorReplayBuffer(self.env_num, self.env_num)
|
|
elif isinstance(buffer, ReplayBufferManager):
|
|
assert buffer.buffer_num >= self.env_num
|
|
if isinstance(buffer, CachedReplayBuffer):
|
|
assert buffer.cached_buffer_num >= self.env_num
|
|
else: # ReplayBuffer or PrioritizedReplayBuffer
|
|
assert buffer.maxsize > 0
|
|
if self.env_num > 1:
|
|
if isinstance(buffer, ReplayBuffer):
|
|
buffer_type = "ReplayBuffer"
|
|
vector_type = "VectorReplayBuffer"
|
|
if isinstance(buffer, PrioritizedReplayBuffer):
|
|
buffer_type = "PrioritizedReplayBuffer"
|
|
vector_type = "PrioritizedVectorReplayBuffer"
|
|
raise TypeError(
|
|
f"Cannot use {buffer_type}(size={buffer.maxsize}, ...) to collect "
|
|
f"{self.env_num} envs,\n\tplease use {vector_type}(total_size="
|
|
f"{buffer.maxsize}, buffer_num={self.env_num}, ...) instead.",
|
|
)
|
|
self.buffer = buffer
|
|
|
|
def reset(
|
|
self,
|
|
reset_buffer: bool = True,
|
|
gym_reset_kwargs: dict[str, Any] | None = None,
|
|
) -> None:
|
|
"""Reset the environment, statistics, current data and possibly replay memory.
|
|
|
|
:param reset_buffer: if true, reset the replay buffer that is attached
|
|
to the collector.
|
|
:param gym_reset_kwargs: extra keyword arguments to pass into the environment's
|
|
reset function. Defaults to None (extra keyword arguments)
|
|
"""
|
|
# use empty Batch for "state" so that self.data supports slicing
|
|
# convert empty Batch to None when passing data to policy
|
|
data = Batch(
|
|
obs={},
|
|
act={},
|
|
rew={},
|
|
terminated={},
|
|
truncated={},
|
|
done={},
|
|
obs_next={},
|
|
info={},
|
|
policy={},
|
|
)
|
|
self.data = cast(RolloutBatchProtocol, data)
|
|
self.reset_env(gym_reset_kwargs)
|
|
if reset_buffer:
|
|
self.reset_buffer()
|
|
self.reset_stat()
|
|
|
|
def reset_stat(self) -> None:
|
|
"""Reset the statistic variables."""
|
|
self.collect_step, self.collect_episode, self.collect_time = 0, 0, 0.0
|
|
|
|
def reset_buffer(self, keep_statistics: bool = False) -> None:
|
|
"""Reset the data buffer."""
|
|
self.buffer.reset(keep_statistics=keep_statistics)
|
|
|
|
def reset_env(self, gym_reset_kwargs: dict[str, Any] | None = None) -> None:
|
|
"""Reset all of the environments."""
|
|
gym_reset_kwargs = gym_reset_kwargs if gym_reset_kwargs else {}
|
|
obs, info = self.env.reset(**gym_reset_kwargs)
|
|
if self.preprocess_fn:
|
|
processed_data = self.preprocess_fn(obs=obs, info=info, env_id=np.arange(self.env_num))
|
|
obs = processed_data.get("obs", obs)
|
|
info = processed_data.get("info", info)
|
|
self.data.info = info # type: ignore
|
|
self.data.obs = obs
|
|
|
|
def _reset_state(self, id: int | list[int]) -> None:
|
|
"""Reset the hidden state: self.data.state[id]."""
|
|
if hasattr(self.data.policy, "hidden_state"):
|
|
state = self.data.policy.hidden_state # it is a reference
|
|
if isinstance(state, torch.Tensor):
|
|
state[id].zero_()
|
|
elif isinstance(state, np.ndarray):
|
|
state[id] = None if state.dtype == object else 0
|
|
elif isinstance(state, Batch):
|
|
state.empty_(id)
|
|
|
|
def _reset_env_with_ids(
|
|
self,
|
|
local_ids: list[int] | np.ndarray,
|
|
global_ids: list[int] | np.ndarray,
|
|
gym_reset_kwargs: dict[str, Any] | None = None,
|
|
) -> None:
|
|
gym_reset_kwargs = gym_reset_kwargs if gym_reset_kwargs else {}
|
|
obs_reset, info = self.env.reset(global_ids, **gym_reset_kwargs)
|
|
if self.preprocess_fn:
|
|
processed_data = self.preprocess_fn(obs=obs_reset, info=info, env_id=global_ids)
|
|
obs_reset = processed_data.get("obs", obs_reset)
|
|
info = processed_data.get("info", info)
|
|
self.data.info[local_ids] = info # type: ignore
|
|
|
|
self.data.obs_next[local_ids] = obs_reset # type: ignore
|
|
|
|
def collect(
|
|
self,
|
|
n_step: int | None = None,
|
|
n_episode: int | None = None,
|
|
random: bool = False,
|
|
render: float | None = None,
|
|
no_grad: bool = True,
|
|
gym_reset_kwargs: dict[str, Any] | None = None,
|
|
) -> CollectStats:
|
|
"""Collect a specified number of step or episode.
|
|
|
|
To ensure unbiased sampling result with n_episode option, this function will
|
|
first collect ``n_episode - env_num`` episodes, then for the last ``env_num``
|
|
episodes, they will be collected evenly from each env.
|
|
|
|
:param n_step: how many steps you want to collect.
|
|
:param n_episode: how many episodes you want to collect.
|
|
:param random: whether to use random policy for collecting data. Default
|
|
to False.
|
|
:param render: the sleep time between rendering consecutive frames.
|
|
Default to None (no rendering).
|
|
:param no_grad: whether to retain gradient in policy.forward(). Default to
|
|
True (no gradient retaining).
|
|
:param gym_reset_kwargs: extra keyword arguments to pass into the environment's
|
|
reset function. Defaults to None (extra keyword arguments)
|
|
|
|
.. note::
|
|
|
|
One and only one collection number specification is permitted, either
|
|
``n_step`` or ``n_episode``.
|
|
|
|
:return: A dataclass object
|
|
"""
|
|
assert not self.env.is_async, "Please use AsyncCollector if using async venv."
|
|
if n_step is not None:
|
|
assert n_episode is None, (
|
|
f"Only one of n_step or n_episode is allowed in Collector."
|
|
f"collect, got n_step={n_step}, n_episode={n_episode}."
|
|
)
|
|
assert n_step > 0
|
|
if n_step % self.env_num != 0:
|
|
warnings.warn(
|
|
f"n_step={n_step} is not a multiple of #env ({self.env_num}), "
|
|
"which may cause extra transitions collected into the buffer.",
|
|
)
|
|
ready_env_ids = np.arange(self.env_num)
|
|
elif n_episode is not None:
|
|
assert n_episode > 0
|
|
ready_env_ids = np.arange(min(self.env_num, n_episode))
|
|
self.data = self.data[: min(self.env_num, n_episode)]
|
|
else:
|
|
raise TypeError(
|
|
"Please specify at least one (either n_step or n_episode) "
|
|
"in AsyncCollector.collect().",
|
|
)
|
|
|
|
start_time = time.time()
|
|
|
|
step_count = 0
|
|
episode_count = 0
|
|
episode_returns: list[float] = []
|
|
episode_lens: list[int] = []
|
|
episode_start_indices: list[int] = []
|
|
|
|
while True:
|
|
assert len(self.data) == len(ready_env_ids)
|
|
# restore the state: if the last state is None, it won't store
|
|
last_state = self.data.policy.pop("hidden_state", None)
|
|
|
|
# get the next action
|
|
if random:
|
|
try:
|
|
act_sample = [self._action_space[i].sample() for i in ready_env_ids]
|
|
except TypeError: # envpool's action space is not for per-env
|
|
act_sample = [self._action_space.sample() for _ in ready_env_ids]
|
|
act_sample = self.policy.map_action_inverse(act_sample) # type: ignore
|
|
self.data.update(act=act_sample)
|
|
else:
|
|
if no_grad:
|
|
with torch.no_grad(): # faster than retain_grad version
|
|
# self.data.obs will be used by agent to get result
|
|
result = self.policy(self.data, last_state)
|
|
else:
|
|
result = self.policy(self.data, last_state)
|
|
# update state / act / policy into self.data
|
|
policy = result.get("policy", Batch())
|
|
assert isinstance(policy, Batch)
|
|
state = result.get("state", None)
|
|
if state is not None:
|
|
policy.hidden_state = state # save state into buffer
|
|
act = to_numpy(result.act)
|
|
if self.exploration_noise:
|
|
act = self.policy.exploration_noise(act, self.data)
|
|
self.data.update(policy=policy, act=act)
|
|
|
|
# get bounded and remapped actions first (not saved into buffer)
|
|
action_remap = self.policy.map_action(self.data.act)
|
|
# step in env
|
|
|
|
obs_next, rew, terminated, truncated, info = self.env.step(
|
|
action_remap,
|
|
ready_env_ids,
|
|
)
|
|
done = np.logical_or(terminated, truncated)
|
|
|
|
self.data.update(
|
|
obs_next=obs_next,
|
|
rew=rew,
|
|
terminated=terminated,
|
|
truncated=truncated,
|
|
done=done,
|
|
info=info,
|
|
)
|
|
if self.preprocess_fn:
|
|
self.data.update(
|
|
self.preprocess_fn(
|
|
obs_next=self.data.obs_next,
|
|
rew=self.data.rew,
|
|
done=self.data.done,
|
|
info=self.data.info,
|
|
policy=self.data.policy,
|
|
env_id=ready_env_ids,
|
|
act=self.data.act,
|
|
),
|
|
)
|
|
|
|
if render:
|
|
self.env.render()
|
|
if render > 0 and not np.isclose(render, 0):
|
|
time.sleep(render)
|
|
|
|
# add data into the buffer
|
|
ptr, ep_rew, ep_len, ep_idx = self.buffer.add(self.data, buffer_ids=ready_env_ids)
|
|
|
|
# collect statistics
|
|
step_count += len(ready_env_ids)
|
|
|
|
if np.any(done):
|
|
env_ind_local = np.where(done)[0]
|
|
env_ind_global = ready_env_ids[env_ind_local]
|
|
episode_count += len(env_ind_local)
|
|
episode_lens.extend(ep_len[env_ind_local])
|
|
episode_returns.extend(ep_rew[env_ind_local])
|
|
episode_start_indices.extend(ep_idx[env_ind_local])
|
|
# now we copy obs_next to obs, but since there might be
|
|
# finished episodes, we have to reset finished envs first.
|
|
self._reset_env_with_ids(env_ind_local, env_ind_global, gym_reset_kwargs)
|
|
for i in env_ind_local:
|
|
self._reset_state(i)
|
|
|
|
# remove surplus env id from ready_env_ids
|
|
# to avoid bias in selecting environments
|
|
if n_episode:
|
|
surplus_env_num = len(ready_env_ids) - (n_episode - episode_count)
|
|
if surplus_env_num > 0:
|
|
mask = np.ones_like(ready_env_ids, dtype=bool)
|
|
mask[env_ind_local[:surplus_env_num]] = False
|
|
ready_env_ids = ready_env_ids[mask]
|
|
self.data = self.data[mask]
|
|
|
|
self.data.obs = self.data.obs_next
|
|
|
|
if (n_step and step_count >= n_step) or (n_episode and episode_count >= n_episode):
|
|
break
|
|
|
|
# generate statistics
|
|
self.collect_step += step_count
|
|
self.collect_episode += episode_count
|
|
collect_time = max(time.time() - start_time, 1e-9)
|
|
self.collect_time += collect_time
|
|
|
|
if n_episode:
|
|
data = Batch(
|
|
obs={},
|
|
act={},
|
|
rew={},
|
|
terminated={},
|
|
truncated={},
|
|
done={},
|
|
obs_next={},
|
|
info={},
|
|
policy={},
|
|
)
|
|
self.data = cast(RolloutBatchProtocol, data)
|
|
self.reset_env()
|
|
|
|
return CollectStats(
|
|
n_collected_episodes=episode_count,
|
|
n_collected_steps=step_count,
|
|
collect_time=collect_time,
|
|
collect_speed=step_count / collect_time,
|
|
returns=np.array(episode_returns),
|
|
returns_stat=SequenceSummaryStats.from_sequence(episode_returns)
|
|
if len(episode_returns) > 0
|
|
else None,
|
|
lens=np.array(episode_lens, int),
|
|
lens_stat=SequenceSummaryStats.from_sequence(episode_lens)
|
|
if len(episode_lens) > 0
|
|
else None,
|
|
)
|
|
|
|
|
|
class AsyncCollector(Collector):
|
|
"""Async Collector handles async vector environment.
|
|
|
|
The arguments are exactly the same as :class:`~tianshou.data.Collector`, please
|
|
refer to :class:`~tianshou.data.Collector` for more detailed explanation.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
policy: BasePolicy,
|
|
env: BaseVectorEnv,
|
|
buffer: ReplayBuffer | None = None,
|
|
preprocess_fn: Callable[..., RolloutBatchProtocol] | None = None,
|
|
exploration_noise: bool = False,
|
|
) -> None:
|
|
# assert env.is_async
|
|
warnings.warn("Using async setting may collect extra transitions into buffer.")
|
|
super().__init__(
|
|
policy,
|
|
env,
|
|
buffer,
|
|
preprocess_fn,
|
|
exploration_noise,
|
|
)
|
|
|
|
def reset_env(self, gym_reset_kwargs: dict[str, Any] | None = None) -> None:
|
|
super().reset_env(gym_reset_kwargs)
|
|
self._ready_env_ids = np.arange(self.env_num)
|
|
|
|
def collect(
|
|
self,
|
|
n_step: int | None = None,
|
|
n_episode: int | None = None,
|
|
random: bool = False,
|
|
render: float | None = None,
|
|
no_grad: bool = True,
|
|
gym_reset_kwargs: dict[str, Any] | None = None,
|
|
) -> CollectStats:
|
|
"""Collect a specified number of step or episode with async env setting.
|
|
|
|
This function doesn't collect exactly n_step or n_episode number of
|
|
transitions. Instead, in order to support async setting, it may collect more
|
|
than given n_step or n_episode transitions and save into buffer.
|
|
|
|
:param n_step: how many steps you want to collect.
|
|
:param n_episode: how many episodes you want to collect.
|
|
:param random: whether to use random policy for collecting data. Default
|
|
to False.
|
|
:param render: the sleep time between rendering consecutive frames.
|
|
Default to None (no rendering).
|
|
:param no_grad: whether to retain gradient in policy.forward(). Default to
|
|
True (no gradient retaining).
|
|
:param gym_reset_kwargs: extra keyword arguments to pass into the environment's
|
|
reset function. Defaults to None (extra keyword arguments)
|
|
|
|
.. note::
|
|
|
|
One and only one collection number specification is permitted, either
|
|
``n_step`` or ``n_episode``.
|
|
|
|
:return: A dataclass object
|
|
"""
|
|
# collect at least n_step or n_episode
|
|
if n_step is not None:
|
|
assert n_episode is None, (
|
|
"Only one of n_step or n_episode is allowed in Collector."
|
|
f"collect, got n_step={n_step}, n_episode={n_episode}."
|
|
)
|
|
assert n_step > 0
|
|
elif n_episode is not None:
|
|
assert n_episode > 0
|
|
else:
|
|
raise TypeError(
|
|
"Please specify at least one (either n_step or n_episode) "
|
|
"in AsyncCollector.collect().",
|
|
)
|
|
|
|
ready_env_ids = self._ready_env_ids
|
|
|
|
start_time = time.time()
|
|
|
|
step_count = 0
|
|
episode_count = 0
|
|
episode_returns: list[float] = []
|
|
episode_lens: list[int] = []
|
|
episode_start_indices: list[int] = []
|
|
|
|
while True:
|
|
whole_data = self.data
|
|
self.data = self.data[ready_env_ids]
|
|
assert len(whole_data) == self.env_num # major difference
|
|
# restore the state: if the last state is None, it won't store
|
|
last_state = self.data.policy.pop("hidden_state", None)
|
|
|
|
# get the next action
|
|
if random:
|
|
try:
|
|
act_sample = [self._action_space[i].sample() for i in ready_env_ids]
|
|
except TypeError: # envpool's action space is not for per-env
|
|
act_sample = [self._action_space.sample() for _ in ready_env_ids]
|
|
act_sample = self.policy.map_action_inverse(act_sample) # type: ignore
|
|
self.data.update(act=act_sample)
|
|
else:
|
|
if no_grad:
|
|
with torch.no_grad(): # faster than retain_grad version
|
|
# self.data.obs will be used by agent to get result
|
|
result = self.policy(self.data, last_state)
|
|
else:
|
|
result = self.policy(self.data, last_state)
|
|
# update state / act / policy into self.data
|
|
policy = result.get("policy", Batch())
|
|
assert isinstance(policy, Batch)
|
|
state = result.get("state", None)
|
|
if state is not None:
|
|
policy.hidden_state = state # save state into buffer
|
|
act = to_numpy(result.act)
|
|
if self.exploration_noise:
|
|
act = self.policy.exploration_noise(act, self.data)
|
|
self.data.update(policy=policy, act=act)
|
|
|
|
# save act/policy before env.step
|
|
try:
|
|
whole_data.act[ready_env_ids] = self.data.act # type: ignore
|
|
whole_data.policy[ready_env_ids] = self.data.policy
|
|
except ValueError:
|
|
alloc_by_keys_diff(whole_data, self.data, self.env_num, False)
|
|
whole_data[ready_env_ids] = self.data # lots of overhead
|
|
|
|
# get bounded and remapped actions first (not saved into buffer)
|
|
action_remap = self.policy.map_action(self.data.act)
|
|
# step in env
|
|
obs_next, rew, terminated, truncated, info = self.env.step(
|
|
action_remap,
|
|
ready_env_ids,
|
|
)
|
|
done = np.logical_or(terminated, truncated)
|
|
|
|
# change self.data here because ready_env_ids has changed
|
|
try:
|
|
ready_env_ids = info["env_id"]
|
|
except Exception:
|
|
ready_env_ids = np.array([i["env_id"] for i in info])
|
|
self.data = whole_data[ready_env_ids]
|
|
|
|
self.data.update(
|
|
obs_next=obs_next,
|
|
rew=rew,
|
|
terminated=terminated,
|
|
truncated=truncated,
|
|
info=info,
|
|
)
|
|
if self.preprocess_fn:
|
|
try:
|
|
self.data.update(
|
|
self.preprocess_fn(
|
|
obs_next=self.data.obs_next,
|
|
rew=self.data.rew,
|
|
terminated=self.data.terminated,
|
|
truncated=self.data.truncated,
|
|
info=self.data.info,
|
|
env_id=ready_env_ids,
|
|
act=self.data.act,
|
|
),
|
|
)
|
|
except TypeError:
|
|
self.data.update(
|
|
self.preprocess_fn(
|
|
obs_next=self.data.obs_next,
|
|
rew=self.data.rew,
|
|
done=self.data.done,
|
|
info=self.data.info,
|
|
env_id=ready_env_ids,
|
|
act=self.data.act,
|
|
),
|
|
)
|
|
|
|
if render:
|
|
self.env.render()
|
|
if render > 0 and not np.isclose(render, 0):
|
|
time.sleep(render)
|
|
|
|
# add data into the buffer
|
|
ptr, ep_rew, ep_len, ep_idx = self.buffer.add(self.data, buffer_ids=ready_env_ids)
|
|
|
|
# collect statistics
|
|
step_count += len(ready_env_ids)
|
|
|
|
if np.any(done):
|
|
env_ind_local = np.where(done)[0]
|
|
env_ind_global = ready_env_ids[env_ind_local]
|
|
episode_count += len(env_ind_local)
|
|
episode_lens.extend(ep_len[env_ind_local])
|
|
episode_returns.extend(ep_rew[env_ind_local])
|
|
episode_start_indices.extend(ep_idx[env_ind_local])
|
|
# now we copy obs_next to obs, but since there might be
|
|
# finished episodes, we have to reset finished envs first.
|
|
self._reset_env_with_ids(env_ind_local, env_ind_global, gym_reset_kwargs)
|
|
for i in env_ind_local:
|
|
self._reset_state(i)
|
|
|
|
try:
|
|
# Need to ignore types b/c according to mypy Tensors cannot be indexed
|
|
# by arrays (which they can...)
|
|
whole_data.obs[ready_env_ids] = self.data.obs_next # type: ignore
|
|
whole_data.rew[ready_env_ids] = self.data.rew
|
|
whole_data.done[ready_env_ids] = self.data.done
|
|
whole_data.info[ready_env_ids] = self.data.info # type: ignore
|
|
except ValueError:
|
|
alloc_by_keys_diff(whole_data, self.data, self.env_num, False)
|
|
self.data.obs = self.data.obs_next
|
|
# lots of overhead
|
|
whole_data[ready_env_ids] = self.data
|
|
self.data = whole_data
|
|
|
|
if (n_step and step_count >= n_step) or (n_episode and episode_count >= n_episode):
|
|
break
|
|
|
|
self._ready_env_ids = ready_env_ids
|
|
|
|
# generate statistics
|
|
self.collect_step += step_count
|
|
self.collect_episode += episode_count
|
|
collect_time = max(time.time() - start_time, 1e-9)
|
|
self.collect_time += collect_time
|
|
|
|
return CollectStats(
|
|
n_collected_episodes=episode_count,
|
|
n_collected_steps=step_count,
|
|
collect_time=collect_time,
|
|
collect_speed=step_count / collect_time,
|
|
returns=np.array(episode_returns),
|
|
returns_stat=SequenceSummaryStats.from_sequence(episode_returns)
|
|
if len(episode_returns) > 0
|
|
else None,
|
|
lens=np.array(episode_lens, int),
|
|
lens_stat=SequenceSummaryStats.from_sequence(episode_lens)
|
|
if len(episode_lens) > 0
|
|
else None,
|
|
)
|