100 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			100 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#!/usr/bin/env python3
 | 
						|
 | 
						|
import datetime
 | 
						|
import os
 | 
						|
from collections.abc import Sequence
 | 
						|
from typing import Literal
 | 
						|
 | 
						|
from jsonargparse import CLI
 | 
						|
from torch.distributions import Independent, Normal
 | 
						|
 | 
						|
from examples.mujoco.mujoco_env import MujocoEnvFactory
 | 
						|
from tianshou.highlevel.config import SamplingConfig
 | 
						|
from tianshou.highlevel.experiment import (
 | 
						|
    ExperimentConfig,
 | 
						|
    PPOExperimentBuilder,
 | 
						|
)
 | 
						|
from tianshou.highlevel.params.lr_scheduler import LRSchedulerFactoryLinear
 | 
						|
from tianshou.highlevel.params.policy_params import PPOParams
 | 
						|
from tianshou.utils import logging
 | 
						|
 | 
						|
 | 
						|
def main(
 | 
						|
    experiment_config: ExperimentConfig,
 | 
						|
    task: str = "Ant-v4",
 | 
						|
    buffer_size: int = 4096,
 | 
						|
    hidden_sizes: Sequence[int] = (64, 64),
 | 
						|
    lr: float = 3e-4,
 | 
						|
    gamma: float = 0.99,
 | 
						|
    epoch: int = 100,
 | 
						|
    step_per_epoch: int = 30000,
 | 
						|
    step_per_collect: int = 2048,
 | 
						|
    repeat_per_collect: int = 10,
 | 
						|
    batch_size: int = 64,
 | 
						|
    training_num: int = 64,
 | 
						|
    test_num: int = 10,
 | 
						|
    rew_norm: bool = True,
 | 
						|
    vf_coef: float = 0.25,
 | 
						|
    ent_coef: float = 0.0,
 | 
						|
    gae_lambda: float = 0.95,
 | 
						|
    bound_action_method: Literal["clip", "tanh"] | None = "clip",
 | 
						|
    lr_decay: bool = True,
 | 
						|
    max_grad_norm: float = 0.5,
 | 
						|
    eps_clip: float = 0.2,
 | 
						|
    dual_clip: float | None = None,
 | 
						|
    value_clip: bool = False,
 | 
						|
    norm_adv: bool = False,
 | 
						|
    recompute_adv: bool = True,
 | 
						|
):
 | 
						|
    now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
 | 
						|
    log_name = os.path.join(task, "ppo", str(experiment_config.seed), now)
 | 
						|
 | 
						|
    sampling_config = SamplingConfig(
 | 
						|
        num_epochs=epoch,
 | 
						|
        step_per_epoch=step_per_epoch,
 | 
						|
        batch_size=batch_size,
 | 
						|
        num_train_envs=training_num,
 | 
						|
        num_test_envs=test_num,
 | 
						|
        buffer_size=buffer_size,
 | 
						|
        step_per_collect=step_per_collect,
 | 
						|
        repeat_per_collect=repeat_per_collect,
 | 
						|
    )
 | 
						|
 | 
						|
    env_factory = MujocoEnvFactory(task, experiment_config.seed, sampling_config)
 | 
						|
 | 
						|
    def dist_fn(*logits):
 | 
						|
        return Independent(Normal(*logits), 1)
 | 
						|
 | 
						|
    experiment = (
 | 
						|
        PPOExperimentBuilder(env_factory, experiment_config, sampling_config)
 | 
						|
        .with_ppo_params(
 | 
						|
            PPOParams(
 | 
						|
                discount_factor=gamma,
 | 
						|
                gae_lambda=gae_lambda,
 | 
						|
                action_bound_method=bound_action_method,
 | 
						|
                reward_normalization=rew_norm,
 | 
						|
                ent_coef=ent_coef,
 | 
						|
                vf_coef=vf_coef,
 | 
						|
                max_grad_norm=max_grad_norm,
 | 
						|
                value_clip=value_clip,
 | 
						|
                advantage_normalization=norm_adv,
 | 
						|
                eps_clip=eps_clip,
 | 
						|
                dual_clip=dual_clip,
 | 
						|
                recompute_advantage=recompute_adv,
 | 
						|
                lr=lr,
 | 
						|
                lr_scheduler_factory=LRSchedulerFactoryLinear(sampling_config)
 | 
						|
                if lr_decay
 | 
						|
                else None,
 | 
						|
                dist_fn=dist_fn,
 | 
						|
            ),
 | 
						|
        )
 | 
						|
        .with_actor_factory_default(hidden_sizes)
 | 
						|
        .with_critic_factory_default(hidden_sizes)
 | 
						|
        .build()
 | 
						|
    )
 | 
						|
    experiment.run(log_name)
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    logging.run_main(lambda: CLI(main))
 |