258 lines
9.1 KiB
Python
258 lines
9.1 KiB
Python
import os, sys
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), os.path.pardir))
|
|
import numpy as np
|
|
import utils
|
|
import time
|
|
import copy
|
|
import network_small
|
|
import tensorflow as tf
|
|
from collections import deque
|
|
from tianshou.core.mcts.mcts import MCTS
|
|
|
|
DELTA = [[1, 0], [-1, 0], [0, -1], [0, 1]]
|
|
CORNER_OFFSET = [[-1, -1], [-1, 1], [1, 1], [1, -1]]
|
|
|
|
|
|
class GoEnv:
|
|
def __init__(self, size=9, komi=6.5):
|
|
self.size = size
|
|
self.komi = komi
|
|
self.board = [utils.EMPTY] * (self.size * self.size)
|
|
self.history = deque(maxlen=8)
|
|
|
|
def _flatten(self, vertex):
|
|
x, y = vertex
|
|
return (x - 1) * self.size + (y - 1)
|
|
|
|
def _bfs(self, vertex, color, block, status, alive_break):
|
|
block.append(vertex)
|
|
status[self._flatten(vertex)] = True
|
|
nei = self._neighbor(vertex)
|
|
for n in nei:
|
|
if not status[self._flatten(n)]:
|
|
if self.board[self._flatten(n)] == color:
|
|
self._bfs(n, color, block, status, alive_break)
|
|
|
|
def _find_block(self, vertex, alive_break=False):
|
|
block = []
|
|
status = [False] * (self.size * self.size)
|
|
color = self.board[self._flatten(vertex)]
|
|
self._bfs(vertex, color, block, status, alive_break)
|
|
|
|
for b in block:
|
|
for n in self._neighbor(b):
|
|
if self.board[self._flatten(n)] == utils.EMPTY:
|
|
return False, block
|
|
return True, block
|
|
|
|
def _is_qi(self, color, vertex):
|
|
nei = self._neighbor(vertex)
|
|
for n in nei:
|
|
if self.board[self._flatten(n)] == utils.EMPTY:
|
|
return True
|
|
|
|
self.board[self._flatten(vertex)] = color
|
|
for n in nei:
|
|
if self.board[self._flatten(n)] == utils.another_color(color):
|
|
can_kill, block = self._find_block(n)
|
|
if can_kill:
|
|
self.board[self._flatten(vertex)] = utils.EMPTY
|
|
return True
|
|
|
|
### avoid suicide
|
|
can_kill, block = self._find_block(vertex)
|
|
if can_kill:
|
|
self.board[self._flatten(vertex)] = utils.EMPTY
|
|
return False
|
|
|
|
self.board[self._flatten(vertex)] = utils.EMPTY
|
|
return True
|
|
|
|
def _check_global_isomorphous(self, color, vertex):
|
|
##backup
|
|
_board = copy.copy(self.board)
|
|
self.board[self._flatten(vertex)] = color
|
|
self._process_board(color, vertex)
|
|
if self.board in self.history:
|
|
res = True
|
|
else:
|
|
res = False
|
|
|
|
self.board = _board
|
|
return res
|
|
|
|
def _in_board(self, vertex):
|
|
x, y = vertex
|
|
if x < 1 or x > self.size: return False
|
|
if y < 1 or y > self.size: return False
|
|
return True
|
|
|
|
def _neighbor(self, vertex):
|
|
x, y = vertex
|
|
nei = []
|
|
for d in DELTA:
|
|
_x = x + d[0]
|
|
_y = y + d[1]
|
|
if self._in_board((_x, _y)):
|
|
nei.append((_x, _y))
|
|
return nei
|
|
|
|
def _corner(self, vertex):
|
|
x, y = vertex
|
|
corner = []
|
|
for d in CORNER_OFFSET:
|
|
_x = x + d[0]
|
|
_y = y + d[1]
|
|
if self._in_board((_x, _y)):
|
|
corner.append((_x, _y))
|
|
return corner
|
|
|
|
def _process_board(self, color, vertex):
|
|
nei = self._neighbor(vertex)
|
|
for n in nei:
|
|
if self.board[self._flatten(n)] == utils.another_color(color):
|
|
can_kill, block = self._find_block(n, alive_break=True)
|
|
if can_kill:
|
|
for b in block:
|
|
self.board[self._flatten(b)] = utils.EMPTY
|
|
|
|
def _find_group(self, start):
|
|
color = self.board[self._flatten(start)]
|
|
# print ("color : ", color)
|
|
chain = set()
|
|
frontier = [start]
|
|
while frontier:
|
|
current = frontier.pop()
|
|
# print ("current : ", current)
|
|
chain.add(current)
|
|
for n in self._neighbor(current):
|
|
# print n, self._flatten(n), self.board[self._flatten(n)],
|
|
if self.board[self._flatten(n)] == color and not n in chain:
|
|
frontier.append(n)
|
|
return chain
|
|
|
|
def _is_eye(self, color, vertex):
|
|
nei = self._neighbor(vertex)
|
|
cor = self._corner(vertex)
|
|
ncolor = {color == self.board[self._flatten(n)] for n in nei}
|
|
if False in ncolor:
|
|
# print "not all neighbors are in same color with us"
|
|
return False
|
|
if set(nei) < self._find_group(nei[0]):
|
|
# print "all neighbors are in same group and same color with us"
|
|
return True
|
|
else:
|
|
opponent_number = [self.board[self._flatten(c)] for c in cor].count(-color)
|
|
opponent_propotion = float(opponent_number) / float(len(cor))
|
|
if opponent_propotion < 0.5:
|
|
# print "few opponents, real eye"
|
|
return True
|
|
else:
|
|
# print "many opponents, fake eye"
|
|
return False
|
|
|
|
# def is_valid(self, color, vertex):
|
|
def is_valid(self, state, action):
|
|
# state is the play board, the shape is [1, 9, 9, 17]
|
|
if action == self.size * self.size:
|
|
vertex = (0, 0)
|
|
else:
|
|
vertex = (action / self.size + 1, action % self.size + 1)
|
|
if state[0, 0, 0, -1] == utils.BLACK:
|
|
color = utils.BLACK
|
|
else:
|
|
color = utils.WHITE
|
|
self.history.clear()
|
|
for i in range(8):
|
|
self.history.append((state[:, :, :, i] - state[:, :, :, i + 8]).reshape(-1).tolist())
|
|
self.board = copy.copy(self.history[-1])
|
|
### in board
|
|
if not self._in_board(vertex):
|
|
return False
|
|
|
|
### already have stone
|
|
if not self.board[self._flatten(vertex)] == utils.EMPTY:
|
|
# print(np.array(self.board).reshape(9, 9))
|
|
# print(vertex)
|
|
return False
|
|
|
|
### check if it is qi
|
|
if not self._is_qi(color, vertex):
|
|
return False
|
|
|
|
### check if it is an eye of yourself
|
|
### assumptions : notice that this judgement requires that the state is an endgame
|
|
if self._is_eye(color, vertex):
|
|
return False
|
|
|
|
if self._check_global_isomorphous(color, vertex):
|
|
return False
|
|
|
|
return True
|
|
|
|
def do_move(self, color, vertex):
|
|
if vertex == utils.PASS:
|
|
return True
|
|
|
|
id_ = self._flatten(vertex)
|
|
if self.board[id_] == utils.EMPTY:
|
|
self.board[id_] = color
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
def step_forward(self, state, action):
|
|
if state[0, 0, 0, -1] == 1:
|
|
color = utils.BLACK
|
|
else:
|
|
color = utils.WHITE
|
|
if action == self.size ** 2:
|
|
vertex = utils.PASS
|
|
else:
|
|
vertex = (action % self.size + 1, action / self.size + 1)
|
|
# print(vertex)
|
|
# print(self.board)
|
|
self.board = (state[:, :, :, 7] - state[:, :, :, 15]).reshape(-1).tolist()
|
|
self.do_move(color, vertex)
|
|
new_state = np.concatenate(
|
|
[state[:, :, :, 1:8], (np.array(self.board) == utils.BLACK).reshape(1, self.size, self.size, 1),
|
|
state[:, :, :, 9:16], (np.array(self.board) == utils.WHITE).reshape(1, self.size, self.size, 1),
|
|
np.array(1 - state[:, :, :, -1]).reshape(1, self.size, self.size, 1)],
|
|
axis=3)
|
|
return new_state, 0
|
|
|
|
|
|
class strategy(object):
|
|
def __init__(self, checkpoint_path):
|
|
self.simulator = GoEnv()
|
|
self.net = network_small.Network()
|
|
self.sess = self.net.forward(checkpoint_path)
|
|
self.evaluator = lambda state: self.sess.run([tf.nn.softmax(self.net.p), self.net.v],
|
|
feed_dict={self.net.x: state, self.net.is_training: False})
|
|
|
|
def data_process(self, history, color):
|
|
state = np.zeros([1, self.simulator.size, self.simulator.size, 17])
|
|
for i in range(8):
|
|
state[0, :, :, i] = np.array(np.array(history[i]) == np.ones(self.simulator.size ** 2)).reshape(self.simulator.size, self.simulator.size)
|
|
state[0, :, :, i + 8] = np.array(np.array(history[i]) == -np.ones(self.simulator.size ** 2)).reshape(self.simulator.size, self.simulator.size)
|
|
if color == utils.BLACK:
|
|
state[0, :, :, 16] = np.ones([self.simulator.size, self.simulator.size])
|
|
if color == utils.WHITE:
|
|
state[0, :, :, 16] = np.zeros([self.simulator.size, self.simulator.size])
|
|
return state
|
|
|
|
def gen_move(self, history, color):
|
|
self.simulator.history = copy.copy(history)
|
|
self.simulator.board = copy.copy(history[-1])
|
|
state = self.data_process(self.simulator.history, color)
|
|
mcts = MCTS(self.simulator, self.evaluator, state, self.simulator.size ** 2 + 1, inverse=True, max_step=100)
|
|
temp = 1
|
|
prob = mcts.root.N ** temp / np.sum(mcts.root.N ** temp)
|
|
choice = np.random.choice(self.simulator.size ** 2 + 1, 1, p=prob).tolist()[0]
|
|
if choice == self.simulator.size ** 2:
|
|
move = utils.PASS
|
|
else:
|
|
move = (choice % self.simulator.size + 1, choice / self.simulator.size + 1)
|
|
return move, prob
|