2020-04-08 21:13:15 +08:00

127 lines
5.2 KiB
Python

import torch
from copy import deepcopy
import torch.nn.functional as F
from tianshou.policy import DDPGPolicy
class TD3Policy(DDPGPolicy):
"""Implementation of Twin Delayed Deep Deterministic Policy Gradient,
arXiv:1802.09477
:param torch.nn.Module actor: the actor network following the rules in
:class:`~tianshou.policy.BasePolicy`. (s -> logits)
:param torch.optim.Optimizer actor_optim: the optimizer for actor network.
:param torch.nn.Module critic1: the first critic network. (s, a -> Q(s,
a))
:param torch.optim.Optimizer critic1_optim: the optimizer for the first
critic network.
:param torch.nn.Module critic2: the second critic network. (s, a -> Q(s,
a))
:param torch.optim.Optimizer critic2_optim: the optimizer for the second
critic network.
:param float tau: param for soft update of the target network, defaults to
0.005.
:param float gamma: discount factor, in [0, 1], defaults to 0.99.
:param float exploration_noise: the noise intensity, add to the action,
defaults to 0.1.
:param float policy_noise: the noise used in updating policy network,
default to 0.2.
:param int update_actor_freq: the update frequency of actor network,
default to 2.
:param float noise_clip: the clipping range used in updating policy
network, default to 0.5.
:param action_range: the action range (minimum, maximum).
:type action_range: [float, float]
:param bool reward_normalization: normalize the reward to Normal(0, 1),
defaults to ``False``.
:param bool ignore_done: ignore the done flag while training the policy,
defaults to ``False``.
"""
def __init__(self, actor, actor_optim, critic1, critic1_optim,
critic2, critic2_optim, tau=0.005, gamma=0.99,
exploration_noise=0.1, policy_noise=0.2, update_actor_freq=2,
noise_clip=0.5, action_range=None,
reward_normalization=False, ignore_done=False, **kwargs):
super().__init__(actor, actor_optim, None, None, tau, gamma,
exploration_noise, action_range, reward_normalization,
ignore_done, **kwargs)
self.critic1, self.critic1_old = critic1, deepcopy(critic1)
self.critic1_old.eval()
self.critic1_optim = critic1_optim
self.critic2, self.critic2_old = critic2, deepcopy(critic2)
self.critic2_old.eval()
self.critic2_optim = critic2_optim
self._policy_noise = policy_noise
self._freq = update_actor_freq
self._noise_clip = noise_clip
self._cnt = 0
self._last = 0
def train(self):
self.training = True
self.actor.train()
self.critic1.train()
self.critic2.train()
def eval(self):
self.training = False
self.actor.eval()
self.critic1.eval()
self.critic2.eval()
def sync_weight(self):
for o, n in zip(self.actor_old.parameters(), self.actor.parameters()):
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
for o, n in zip(
self.critic1_old.parameters(), self.critic1.parameters()):
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
for o, n in zip(
self.critic2_old.parameters(), self.critic2.parameters()):
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
def learn(self, batch, **kwargs):
with torch.no_grad():
a_ = self(batch, model='actor_old', input='obs_next').act
dev = a_.device
noise = torch.randn(size=a_.shape, device=dev) * self._policy_noise
if self._noise_clip >= 0:
noise = noise.clamp(-self._noise_clip, self._noise_clip)
a_ += noise
a_ = a_.clamp(self._range[0], self._range[1])
target_q = torch.min(
self.critic1_old(batch.obs_next, a_),
self.critic2_old(batch.obs_next, a_))
rew = torch.tensor(batch.rew,
dtype=torch.float, device=dev)[:, None]
done = torch.tensor(batch.done,
dtype=torch.float, device=dev)[:, None]
target_q = (rew + (1. - done) * self._gamma * target_q)
# critic 1
current_q1 = self.critic1(batch.obs, batch.act)
critic1_loss = F.mse_loss(current_q1, target_q)
self.critic1_optim.zero_grad()
critic1_loss.backward()
self.critic1_optim.step()
# critic 2
current_q2 = self.critic2(batch.obs, batch.act)
critic2_loss = F.mse_loss(current_q2, target_q)
self.critic2_optim.zero_grad()
critic2_loss.backward()
self.critic2_optim.step()
if self._cnt % self._freq == 0:
actor_loss = -self.critic1(
batch.obs, self(batch, eps=0).act).mean()
self.actor_optim.zero_grad()
actor_loss.backward()
self._last = actor_loss.item()
self.actor_optim.step()
self.sync_weight()
self._cnt += 1
return {
'loss/actor': self._last,
'loss/critic1': critic1_loss.item(),
'loss/critic2': critic2_loss.item(),
}