127 lines
5.2 KiB
Python
127 lines
5.2 KiB
Python
import torch
|
|
from copy import deepcopy
|
|
import torch.nn.functional as F
|
|
|
|
from tianshou.policy import DDPGPolicy
|
|
|
|
|
|
class TD3Policy(DDPGPolicy):
|
|
"""Implementation of Twin Delayed Deep Deterministic Policy Gradient,
|
|
arXiv:1802.09477
|
|
|
|
:param torch.nn.Module actor: the actor network following the rules in
|
|
:class:`~tianshou.policy.BasePolicy`. (s -> logits)
|
|
:param torch.optim.Optimizer actor_optim: the optimizer for actor network.
|
|
:param torch.nn.Module critic1: the first critic network. (s, a -> Q(s,
|
|
a))
|
|
:param torch.optim.Optimizer critic1_optim: the optimizer for the first
|
|
critic network.
|
|
:param torch.nn.Module critic2: the second critic network. (s, a -> Q(s,
|
|
a))
|
|
:param torch.optim.Optimizer critic2_optim: the optimizer for the second
|
|
critic network.
|
|
:param float tau: param for soft update of the target network, defaults to
|
|
0.005.
|
|
:param float gamma: discount factor, in [0, 1], defaults to 0.99.
|
|
:param float exploration_noise: the noise intensity, add to the action,
|
|
defaults to 0.1.
|
|
:param float policy_noise: the noise used in updating policy network,
|
|
default to 0.2.
|
|
:param int update_actor_freq: the update frequency of actor network,
|
|
default to 2.
|
|
:param float noise_clip: the clipping range used in updating policy
|
|
network, default to 0.5.
|
|
:param action_range: the action range (minimum, maximum).
|
|
:type action_range: [float, float]
|
|
:param bool reward_normalization: normalize the reward to Normal(0, 1),
|
|
defaults to ``False``.
|
|
:param bool ignore_done: ignore the done flag while training the policy,
|
|
defaults to ``False``.
|
|
"""
|
|
|
|
def __init__(self, actor, actor_optim, critic1, critic1_optim,
|
|
critic2, critic2_optim, tau=0.005, gamma=0.99,
|
|
exploration_noise=0.1, policy_noise=0.2, update_actor_freq=2,
|
|
noise_clip=0.5, action_range=None,
|
|
reward_normalization=False, ignore_done=False, **kwargs):
|
|
super().__init__(actor, actor_optim, None, None, tau, gamma,
|
|
exploration_noise, action_range, reward_normalization,
|
|
ignore_done, **kwargs)
|
|
self.critic1, self.critic1_old = critic1, deepcopy(critic1)
|
|
self.critic1_old.eval()
|
|
self.critic1_optim = critic1_optim
|
|
self.critic2, self.critic2_old = critic2, deepcopy(critic2)
|
|
self.critic2_old.eval()
|
|
self.critic2_optim = critic2_optim
|
|
self._policy_noise = policy_noise
|
|
self._freq = update_actor_freq
|
|
self._noise_clip = noise_clip
|
|
self._cnt = 0
|
|
self._last = 0
|
|
|
|
def train(self):
|
|
self.training = True
|
|
self.actor.train()
|
|
self.critic1.train()
|
|
self.critic2.train()
|
|
|
|
def eval(self):
|
|
self.training = False
|
|
self.actor.eval()
|
|
self.critic1.eval()
|
|
self.critic2.eval()
|
|
|
|
def sync_weight(self):
|
|
for o, n in zip(self.actor_old.parameters(), self.actor.parameters()):
|
|
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
|
|
for o, n in zip(
|
|
self.critic1_old.parameters(), self.critic1.parameters()):
|
|
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
|
|
for o, n in zip(
|
|
self.critic2_old.parameters(), self.critic2.parameters()):
|
|
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
|
|
|
|
def learn(self, batch, **kwargs):
|
|
with torch.no_grad():
|
|
a_ = self(batch, model='actor_old', input='obs_next').act
|
|
dev = a_.device
|
|
noise = torch.randn(size=a_.shape, device=dev) * self._policy_noise
|
|
if self._noise_clip >= 0:
|
|
noise = noise.clamp(-self._noise_clip, self._noise_clip)
|
|
a_ += noise
|
|
a_ = a_.clamp(self._range[0], self._range[1])
|
|
target_q = torch.min(
|
|
self.critic1_old(batch.obs_next, a_),
|
|
self.critic2_old(batch.obs_next, a_))
|
|
rew = torch.tensor(batch.rew,
|
|
dtype=torch.float, device=dev)[:, None]
|
|
done = torch.tensor(batch.done,
|
|
dtype=torch.float, device=dev)[:, None]
|
|
target_q = (rew + (1. - done) * self._gamma * target_q)
|
|
# critic 1
|
|
current_q1 = self.critic1(batch.obs, batch.act)
|
|
critic1_loss = F.mse_loss(current_q1, target_q)
|
|
self.critic1_optim.zero_grad()
|
|
critic1_loss.backward()
|
|
self.critic1_optim.step()
|
|
# critic 2
|
|
current_q2 = self.critic2(batch.obs, batch.act)
|
|
critic2_loss = F.mse_loss(current_q2, target_q)
|
|
self.critic2_optim.zero_grad()
|
|
critic2_loss.backward()
|
|
self.critic2_optim.step()
|
|
if self._cnt % self._freq == 0:
|
|
actor_loss = -self.critic1(
|
|
batch.obs, self(batch, eps=0).act).mean()
|
|
self.actor_optim.zero_grad()
|
|
actor_loss.backward()
|
|
self._last = actor_loss.item()
|
|
self.actor_optim.step()
|
|
self.sync_weight()
|
|
self._cnt += 1
|
|
return {
|
|
'loss/actor': self._last,
|
|
'loss/critic1': critic1_loss.item(),
|
|
'loss/critic2': critic2_loss.item(),
|
|
}
|