* make fileds with empty Batch rather than None after reset * dummy code * remove dummy * add reward_length argument for collector * Improve Batch (#126) * make sure the key type of Batch is string, and add unit tests * add is_empty() function and unit tests * enable cat of mixing dict and Batch, just like stack * bugfix for reward_length * add get_final_reward_fn argument to collector to deal with marl * minor polish * remove multibuf * minor polish * improve and implement Batch.cat_ * bugfix for buffer.sample with field impt_weight * restore the usage of a.cat_(b) * fix 2 bugs in batch and add corresponding unittest * code fix for update * update is_empty to recognize empty over empty; bugfix for len * bugfix for update and add testcase * add testcase of update * make fileds with empty Batch rather than None after reset * dummy code * remove dummy * add reward_length argument for collector * bugfix for reward_length * add get_final_reward_fn argument to collector to deal with marl * make sure the key type of Batch is string, and add unit tests * add is_empty() function and unit tests * enable cat of mixing dict and Batch, just like stack * dummy code * remove dummy * add multi-agent example: tic-tac-toe * move TicTacToeEnv to a separate file * remove dummy MANet * code refactor * move tic-tac-toe example to test * update doc with marl-example * fix docs * reduce the threshold * revert * update player id to start from 1 and change player to agent; keep coding * add reward_length argument for collector * Improve Batch (#128) * minor polish * improve and implement Batch.cat_ * bugfix for buffer.sample with field impt_weight * restore the usage of a.cat_(b) * fix 2 bugs in batch and add corresponding unittest * code fix for update * update is_empty to recognize empty over empty; bugfix for len * bugfix for update and add testcase * add testcase of update * fix docs * fix docs * fix docs [ci skip] * fix docs [ci skip] Co-authored-by: Trinkle23897 <463003665@qq.com> * refact * re-implement Batch.stack and add testcases * add doc for Batch.stack * reward_metric * modify flag * minor fix * reuse _create_values and refactor stack_ & cat_ * fix pep8 * fix reward stat in collector * fix stat of collector, simplify test/base/env.py * fix docs * minor fix * raise exception for stacking with partial keys and axis!=0 * minor fix * minor fix * minor fix * marl-examples * add condense; bugfix for torch.Tensor; code refactor * marl example can run now * enable tic tac toe with larger board size and win-size * add test dependency * Fix padding of inconsistent keys with Batch.stack and Batch.cat (#130) * re-implement Batch.stack and add testcases * add doc for Batch.stack * reuse _create_values and refactor stack_ & cat_ * fix pep8 * fix docs * raise exception for stacking with partial keys and axis!=0 * minor fix * minor fix Co-authored-by: Trinkle23897 <463003665@qq.com> * stash * let agent learn to play as agent 2 which is harder * code refactor * Improve collector (#125) * remove multibuf * reward_metric * make fileds with empty Batch rather than None after reset * many fixes and refactor Co-authored-by: Trinkle23897 <463003665@qq.com> * marl for tic-tac-toe and general gomoku * update default gamma to 0.1 for tic tac toe to win earlier * fix name typo; change default game config; add rew_norm option * fix pep8 * test commit * mv test dir name * add rew flag * fix torch.optim import error and madqn rew_norm * remove useless kwargs * Vector env enable select worker (#132) * Enable selecting worker for vector env step method. * Update collector to match new vecenv selective worker behavior. * Bug fix. * Fix rebase Co-authored-by: Alexis Duburcq <alexis.duburcq@wandercraft.eu> * show the last move of tictactoe by capital letters * add multi-agent tutorial * fix link * Standardized behavior of Batch.cat and misc code refactor (#137) * code refactor; remove unused kwargs; add reward_normalization for dqn * bugfix for __setitem__ with torch.Tensor; add Batch.condense * minor fix * support cat with empty Batch * remove the dependency of is_empty on len; specify the semantic of empty Batch by test cases * support stack with empty Batch * remove condense * refactor code to reflect the shared / partial / reserved categories of keys * add is_empty(recursive=False) * doc fix * docfix and bugfix for _is_batch_set * add doc for key reservation * bugfix for algebra operators * fix cat with lens hint * code refactor * bugfix for storing None * use ValueError instead of exception * hide lens away from users * add comment for __cat * move the computation of the initial value of lens in cat_ itself. * change the place of doc string * doc fix for Batch doc string * change recursive to recurse * doc string fix * minor fix for batch doc * write tutorials to specify the standard of Batch (#142) * add doc for len exceptions * doc move; unify is_scalar_value function * remove some issubclass check * bugfix for shape of Batch(a=1) * keep moving doc * keep writing batch tutorial * draft version of Batch tutorial done * improving doc * keep improving doc * batch tutorial done * rename _is_number * rename _is_scalar * shape property do not raise exception * restore some doc string * grammarly [ci skip] * grammarly + fix warning of building docs * polish docs * trim and re-arrange batch tutorial * go straight to the point * minor fix for batch doc * add shape / len in basic usage * keep improving tutorial * unify _to_array_with_correct_type to remove duplicate code * delegate type convertion to Batch.__init__ * further delegate type convertion to Batch.__init__ * bugfix for setattr * add a _parse_value function * remove dummy function call * polish docs Co-authored-by: Trinkle23897 <463003665@qq.com> * bugfix for mapolicy * pretty code * remove debug code; remove condense * doc fix * check before get_agents in tutorials/tictactoe * tutorial * fix * minor fix for batch doc * minor polish * faster test_ttt * improve tic-tac-toe environment * change default epoch and step-per-epoch for tic-tac-toe * fix mapolicy * minor polish for mapolicy * 90% to 80% (need to change the tutorial) * win rate * show step number at board * simplify mapolicy * minor polish for mapolicy * remove MADQN * fix pep8 * change legal_actions to mask (need to update docs) * simplify maenv * fix typo * move basevecenv to single file * separate RandomAgent * update docs * grammarly * fix pep8 * win rate typo * format in cheatsheet * use bool mask directly * update doc for boolean mask Co-authored-by: Trinkle23897 <463003665@qq.com> Co-authored-by: Alexis DUBURCQ <alexis.duburcq@gmail.com> Co-authored-by: Alexis Duburcq <alexis.duburcq@wandercraft.eu>
248 lines
8.1 KiB
Python
248 lines
8.1 KiB
Python
import gym
|
|
import numpy as np
|
|
from multiprocessing import Process, Pipe
|
|
from typing import List, Tuple, Union, Optional, Callable, Any
|
|
|
|
try:
|
|
import ray
|
|
except ImportError:
|
|
pass
|
|
|
|
from tianshou.env import BaseVectorEnv
|
|
from tianshou.env.utils import CloudpickleWrapper
|
|
|
|
|
|
class VectorEnv(BaseVectorEnv):
|
|
"""Dummy vectorized environment wrapper, implemented in for-loop.
|
|
|
|
.. seealso::
|
|
|
|
Please refer to :class:`~tianshou.env.BaseVectorEnv` for more detailed
|
|
explanation.
|
|
"""
|
|
|
|
def __init__(self, env_fns: List[Callable[[], gym.Env]]) -> None:
|
|
super().__init__(env_fns)
|
|
self.envs = [_() for _ in env_fns]
|
|
|
|
def __getattr__(self, key):
|
|
return [getattr(env, key) if hasattr(env, key) else None
|
|
for env in self.envs]
|
|
|
|
def reset(self, id: Optional[Union[int, List[int]]] = None) -> np.ndarray:
|
|
if id is None:
|
|
id = range(self.env_num)
|
|
elif np.isscalar(id):
|
|
id = [id]
|
|
obs = np.stack([self.envs[i].reset() for i in id])
|
|
return obs
|
|
|
|
def step(self,
|
|
action: np.ndarray,
|
|
id: Optional[Union[int, List[int]]] = None
|
|
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
|
if id is None:
|
|
id = range(self.env_num)
|
|
elif np.isscalar(id):
|
|
id = [id]
|
|
assert len(action) == len(id)
|
|
result = [self.envs[i].step(action[i]) for i in id]
|
|
obs, rew, done, info = map(np.stack, zip(*result))
|
|
return obs, rew, done, info
|
|
|
|
def seed(self, seed: Optional[Union[int, List[int]]] = None) -> List[int]:
|
|
if np.isscalar(seed):
|
|
seed = [seed + _ for _ in range(self.env_num)]
|
|
elif seed is None:
|
|
seed = [seed] * self.env_num
|
|
result = []
|
|
for e, s in zip(self.envs, seed):
|
|
if hasattr(e, 'seed'):
|
|
result.append(e.seed(s))
|
|
return result
|
|
|
|
def render(self, **kwargs) -> List[Any]:
|
|
result = []
|
|
for e in self.envs:
|
|
if hasattr(e, 'render'):
|
|
result.append(e.render(**kwargs))
|
|
return result
|
|
|
|
def close(self) -> List[Any]:
|
|
return [e.close() for e in self.envs]
|
|
|
|
|
|
def worker(parent, p, env_fn_wrapper):
|
|
parent.close()
|
|
env = env_fn_wrapper.data()
|
|
try:
|
|
while True:
|
|
cmd, data = p.recv()
|
|
if cmd == 'step':
|
|
p.send(env.step(data))
|
|
elif cmd == 'reset':
|
|
p.send(env.reset())
|
|
elif cmd == 'close':
|
|
p.send(env.close())
|
|
p.close()
|
|
break
|
|
elif cmd == 'render':
|
|
p.send(env.render(**data) if hasattr(env, 'render') else None)
|
|
elif cmd == 'seed':
|
|
p.send(env.seed(data) if hasattr(env, 'seed') else None)
|
|
elif cmd == 'getattr':
|
|
p.send(getattr(env, data) if hasattr(env, data) else None)
|
|
else:
|
|
p.close()
|
|
raise NotImplementedError
|
|
except KeyboardInterrupt:
|
|
p.close()
|
|
|
|
|
|
class SubprocVectorEnv(BaseVectorEnv):
|
|
"""Vectorized environment wrapper based on subprocess.
|
|
|
|
.. seealso::
|
|
|
|
Please refer to :class:`~tianshou.env.BaseVectorEnv` for more detailed
|
|
explanation.
|
|
"""
|
|
|
|
def __init__(self, env_fns: List[Callable[[], gym.Env]]) -> None:
|
|
super().__init__(env_fns)
|
|
self.closed = False
|
|
self.parent_remote, self.child_remote = \
|
|
zip(*[Pipe() for _ in range(self.env_num)])
|
|
self.processes = [
|
|
Process(target=worker, args=(
|
|
parent, child, CloudpickleWrapper(env_fn)), daemon=True)
|
|
for (parent, child, env_fn) in zip(
|
|
self.parent_remote, self.child_remote, env_fns)
|
|
]
|
|
for p in self.processes:
|
|
p.start()
|
|
for c in self.child_remote:
|
|
c.close()
|
|
|
|
def __getattr__(self, key):
|
|
for p in self.parent_remote:
|
|
p.send(['getattr', key])
|
|
return [p.recv() for p in self.parent_remote]
|
|
|
|
def step(self,
|
|
action: np.ndarray,
|
|
id: Optional[Union[int, List[int]]] = None
|
|
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
|
if id is None:
|
|
id = range(self.env_num)
|
|
elif np.isscalar(id):
|
|
id = [id]
|
|
assert len(action) == len(id)
|
|
for i, j in enumerate(id):
|
|
self.parent_remote[j].send(['step', action[i]])
|
|
result = [self.parent_remote[i].recv() for i in id]
|
|
obs, rew, done, info = map(np.stack, zip(*result))
|
|
return obs, rew, done, info
|
|
|
|
def reset(self, id: Optional[Union[int, List[int]]] = None) -> np.ndarray:
|
|
if id is None:
|
|
id = range(self.env_num)
|
|
elif np.isscalar(id):
|
|
id = [id]
|
|
for i in id:
|
|
self.parent_remote[i].send(['reset', None])
|
|
obs = np.stack([self.parent_remote[i].recv() for i in id])
|
|
return obs
|
|
|
|
def seed(self, seed: Optional[Union[int, List[int]]] = None) -> List[int]:
|
|
if np.isscalar(seed):
|
|
seed = [seed + _ for _ in range(self.env_num)]
|
|
elif seed is None:
|
|
seed = [seed] * self.env_num
|
|
for p, s in zip(self.parent_remote, seed):
|
|
p.send(['seed', s])
|
|
return [p.recv() for p in self.parent_remote]
|
|
|
|
def render(self, **kwargs) -> List[Any]:
|
|
for p in self.parent_remote:
|
|
p.send(['render', kwargs])
|
|
return [p.recv() for p in self.parent_remote]
|
|
|
|
def close(self) -> List[Any]:
|
|
if self.closed:
|
|
return []
|
|
for p in self.parent_remote:
|
|
p.send(['close', None])
|
|
result = [p.recv() for p in self.parent_remote]
|
|
self.closed = True
|
|
for p in self.processes:
|
|
p.join()
|
|
return result
|
|
|
|
|
|
class RayVectorEnv(BaseVectorEnv):
|
|
"""Vectorized environment wrapper based on
|
|
`ray <https://github.com/ray-project/ray>`_. However, according to our
|
|
test, it is about two times slower than
|
|
:class:`~tianshou.env.SubprocVectorEnv`.
|
|
|
|
.. seealso::
|
|
|
|
Please refer to :class:`~tianshou.env.BaseVectorEnv` for more detailed
|
|
explanation.
|
|
"""
|
|
|
|
def __init__(self, env_fns: List[Callable[[], gym.Env]]) -> None:
|
|
super().__init__(env_fns)
|
|
try:
|
|
if not ray.is_initialized():
|
|
ray.init()
|
|
except NameError:
|
|
raise ImportError(
|
|
'Please install ray to support RayVectorEnv: pip3 install ray')
|
|
self.envs = [
|
|
ray.remote(gym.Wrapper).options(num_cpus=0).remote(e())
|
|
for e in env_fns]
|
|
|
|
def __getattr__(self, key):
|
|
return ray.get([e.__getattr__.remote(key) for e in self.envs])
|
|
|
|
def step(self,
|
|
action: np.ndarray,
|
|
id: Optional[Union[int, List[int]]] = None
|
|
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
|
if id is None:
|
|
id = range(self.env_num)
|
|
elif np.isscalar(id):
|
|
id = [id]
|
|
assert len(action) == len(id)
|
|
result = ray.get([self.envs[j].step.remote(action[i])
|
|
for i, j in enumerate(id)])
|
|
obs, rew, done, info = map(np.stack, zip(*result))
|
|
return obs, rew, done, info
|
|
|
|
def reset(self, id: Optional[Union[int, List[int]]] = None) -> np.ndarray:
|
|
if id is None:
|
|
id = range(self.env_num)
|
|
elif np.isscalar(id):
|
|
id = [id]
|
|
obs = np.stack(ray.get([self.envs[i].reset.remote() for i in id]))
|
|
return obs
|
|
|
|
def seed(self, seed: Optional[Union[int, List[int]]] = None) -> List[int]:
|
|
if not hasattr(self.envs[0], 'seed'):
|
|
return []
|
|
if np.isscalar(seed):
|
|
seed = [seed + _ for _ in range(self.env_num)]
|
|
elif seed is None:
|
|
seed = [seed] * self.env_num
|
|
return ray.get([e.seed.remote(s) for e, s in zip(self.envs, seed)])
|
|
|
|
def render(self, **kwargs) -> List[Any]:
|
|
if not hasattr(self.envs[0], 'render'):
|
|
return [None for e in self.envs]
|
|
return ray.get([e.render.remote(**kwargs) for e in self.envs])
|
|
|
|
def close(self) -> List[Any]:
|
|
return ray.get([e.close.remote() for e in self.envs])
|