* make fileds with empty Batch rather than None after reset * dummy code * remove dummy * add reward_length argument for collector * Improve Batch (#126) * make sure the key type of Batch is string, and add unit tests * add is_empty() function and unit tests * enable cat of mixing dict and Batch, just like stack * bugfix for reward_length * add get_final_reward_fn argument to collector to deal with marl * minor polish * remove multibuf * minor polish * improve and implement Batch.cat_ * bugfix for buffer.sample with field impt_weight * restore the usage of a.cat_(b) * fix 2 bugs in batch and add corresponding unittest * code fix for update * update is_empty to recognize empty over empty; bugfix for len * bugfix for update and add testcase * add testcase of update * make fileds with empty Batch rather than None after reset * dummy code * remove dummy * add reward_length argument for collector * bugfix for reward_length * add get_final_reward_fn argument to collector to deal with marl * make sure the key type of Batch is string, and add unit tests * add is_empty() function and unit tests * enable cat of mixing dict and Batch, just like stack * dummy code * remove dummy * add multi-agent example: tic-tac-toe * move TicTacToeEnv to a separate file * remove dummy MANet * code refactor * move tic-tac-toe example to test * update doc with marl-example * fix docs * reduce the threshold * revert * update player id to start from 1 and change player to agent; keep coding * add reward_length argument for collector * Improve Batch (#128) * minor polish * improve and implement Batch.cat_ * bugfix for buffer.sample with field impt_weight * restore the usage of a.cat_(b) * fix 2 bugs in batch and add corresponding unittest * code fix for update * update is_empty to recognize empty over empty; bugfix for len * bugfix for update and add testcase * add testcase of update * fix docs * fix docs * fix docs [ci skip] * fix docs [ci skip] Co-authored-by: Trinkle23897 <463003665@qq.com> * refact * re-implement Batch.stack and add testcases * add doc for Batch.stack * reward_metric * modify flag * minor fix * reuse _create_values and refactor stack_ & cat_ * fix pep8 * fix reward stat in collector * fix stat of collector, simplify test/base/env.py * fix docs * minor fix * raise exception for stacking with partial keys and axis!=0 * minor fix * minor fix * minor fix * marl-examples * add condense; bugfix for torch.Tensor; code refactor * marl example can run now * enable tic tac toe with larger board size and win-size * add test dependency * Fix padding of inconsistent keys with Batch.stack and Batch.cat (#130) * re-implement Batch.stack and add testcases * add doc for Batch.stack * reuse _create_values and refactor stack_ & cat_ * fix pep8 * fix docs * raise exception for stacking with partial keys and axis!=0 * minor fix * minor fix Co-authored-by: Trinkle23897 <463003665@qq.com> * stash * let agent learn to play as agent 2 which is harder * code refactor * Improve collector (#125) * remove multibuf * reward_metric * make fileds with empty Batch rather than None after reset * many fixes and refactor Co-authored-by: Trinkle23897 <463003665@qq.com> * marl for tic-tac-toe and general gomoku * update default gamma to 0.1 for tic tac toe to win earlier * fix name typo; change default game config; add rew_norm option * fix pep8 * test commit * mv test dir name * add rew flag * fix torch.optim import error and madqn rew_norm * remove useless kwargs * Vector env enable select worker (#132) * Enable selecting worker for vector env step method. * Update collector to match new vecenv selective worker behavior. * Bug fix. * Fix rebase Co-authored-by: Alexis Duburcq <alexis.duburcq@wandercraft.eu> * show the last move of tictactoe by capital letters * add multi-agent tutorial * fix link * Standardized behavior of Batch.cat and misc code refactor (#137) * code refactor; remove unused kwargs; add reward_normalization for dqn * bugfix for __setitem__ with torch.Tensor; add Batch.condense * minor fix * support cat with empty Batch * remove the dependency of is_empty on len; specify the semantic of empty Batch by test cases * support stack with empty Batch * remove condense * refactor code to reflect the shared / partial / reserved categories of keys * add is_empty(recursive=False) * doc fix * docfix and bugfix for _is_batch_set * add doc for key reservation * bugfix for algebra operators * fix cat with lens hint * code refactor * bugfix for storing None * use ValueError instead of exception * hide lens away from users * add comment for __cat * move the computation of the initial value of lens in cat_ itself. * change the place of doc string * doc fix for Batch doc string * change recursive to recurse * doc string fix * minor fix for batch doc * write tutorials to specify the standard of Batch (#142) * add doc for len exceptions * doc move; unify is_scalar_value function * remove some issubclass check * bugfix for shape of Batch(a=1) * keep moving doc * keep writing batch tutorial * draft version of Batch tutorial done * improving doc * keep improving doc * batch tutorial done * rename _is_number * rename _is_scalar * shape property do not raise exception * restore some doc string * grammarly [ci skip] * grammarly + fix warning of building docs * polish docs * trim and re-arrange batch tutorial * go straight to the point * minor fix for batch doc * add shape / len in basic usage * keep improving tutorial * unify _to_array_with_correct_type to remove duplicate code * delegate type convertion to Batch.__init__ * further delegate type convertion to Batch.__init__ * bugfix for setattr * add a _parse_value function * remove dummy function call * polish docs Co-authored-by: Trinkle23897 <463003665@qq.com> * bugfix for mapolicy * pretty code * remove debug code; remove condense * doc fix * check before get_agents in tutorials/tictactoe * tutorial * fix * minor fix for batch doc * minor polish * faster test_ttt * improve tic-tac-toe environment * change default epoch and step-per-epoch for tic-tac-toe * fix mapolicy * minor polish for mapolicy * 90% to 80% (need to change the tutorial) * win rate * show step number at board * simplify mapolicy * minor polish for mapolicy * remove MADQN * fix pep8 * change legal_actions to mask (need to update docs) * simplify maenv * fix typo * move basevecenv to single file * separate RandomAgent * update docs * grammarly * fix pep8 * win rate typo * format in cheatsheet * use bool mask directly * update doc for boolean mask Co-authored-by: Trinkle23897 <463003665@qq.com> Co-authored-by: Alexis DUBURCQ <alexis.duburcq@gmail.com> Co-authored-by: Alexis Duburcq <alexis.duburcq@wandercraft.eu>
213 lines
8.4 KiB
Python
213 lines
8.4 KiB
Python
import torch
|
|
import numpy as np
|
|
from torch import nn
|
|
from abc import ABC, abstractmethod
|
|
from typing import Dict, List, Union, Optional, Callable
|
|
|
|
from tianshou.data import Batch, ReplayBuffer, to_torch_as
|
|
|
|
|
|
class BasePolicy(ABC, nn.Module):
|
|
"""Tianshou aims to modularizing RL algorithms. It comes into several
|
|
classes of policies in Tianshou. All of the policy classes must inherit
|
|
:class:`~tianshou.policy.BasePolicy`.
|
|
|
|
A policy class typically has four parts:
|
|
|
|
* :meth:`~tianshou.policy.BasePolicy.__init__`: initialize the policy, \
|
|
including coping the target network and so on;
|
|
* :meth:`~tianshou.policy.BasePolicy.forward`: compute action with given \
|
|
observation;
|
|
* :meth:`~tianshou.policy.BasePolicy.process_fn`: pre-process data from \
|
|
the replay buffer (this function can interact with replay buffer);
|
|
* :meth:`~tianshou.policy.BasePolicy.learn`: update policy with a given \
|
|
batch of data.
|
|
|
|
Most of the policy needs a neural network to predict the action and an
|
|
optimizer to optimize the policy. The rules of self-defined networks are:
|
|
|
|
1. Input: observation ``obs`` (may be a ``numpy.ndarray``, a \
|
|
``torch.Tensor``, a dict or any others), hidden state ``state`` (for \
|
|
RNN usage), and other information ``info`` provided by the \
|
|
environment.
|
|
2. Output: some ``logits``, the next hidden state ``state``, and the \
|
|
intermediate result during policy forwarding procedure ``policy``. The\
|
|
``logits`` could be a tuple instead of a ``torch.Tensor``. It depends \
|
|
on how the policy process the network output. For example, in PPO, the\
|
|
return of the network might be ``(mu, sigma), state`` for Gaussian \
|
|
policy. The ``policy`` can be a Batch of torch.Tensor or other things,\
|
|
which will be stored in the replay buffer, and can be accessed in the \
|
|
policy update process (e.g. in ``policy.learn()``, the \
|
|
``batch.policy`` is what you need).
|
|
|
|
Since :class:`~tianshou.policy.BasePolicy` inherits ``torch.nn.Module``,
|
|
you can use :class:`~tianshou.policy.BasePolicy` almost the same as
|
|
``torch.nn.Module``, for instance, loading and saving the model:
|
|
::
|
|
|
|
torch.save(policy.state_dict(), 'policy.pth')
|
|
policy.load_state_dict(torch.load('policy.pth'))
|
|
"""
|
|
|
|
def __init__(self, **kwargs) -> None:
|
|
super().__init__()
|
|
self.observation_space = kwargs.get('observation_space')
|
|
self.action_space = kwargs.get('action_space')
|
|
self.agent_id = 0
|
|
|
|
def set_agent_id(self, agent_id: int) -> None:
|
|
"""set self.agent_id = agent_id, for MARL."""
|
|
self.agent_id = agent_id
|
|
|
|
def process_fn(self, batch: Batch, buffer: ReplayBuffer,
|
|
indice: np.ndarray) -> Batch:
|
|
"""Pre-process the data from the provided replay buffer. Check out
|
|
:ref:`policy_concept` for more information.
|
|
"""
|
|
return batch
|
|
|
|
@abstractmethod
|
|
def forward(self, batch: Batch,
|
|
state: Optional[Union[dict, Batch, np.ndarray]] = None,
|
|
**kwargs) -> Batch:
|
|
"""Compute action over the given batch data.
|
|
|
|
:return: A :class:`~tianshou.data.Batch` which MUST have the following\
|
|
keys:
|
|
|
|
* ``act`` an numpy.ndarray or a torch.Tensor, the action over \
|
|
given batch data.
|
|
* ``state`` a dict, an numpy.ndarray or a torch.Tensor, the \
|
|
internal state of the policy, ``None`` as default.
|
|
|
|
Other keys are user-defined. It depends on the algorithm. For example,
|
|
::
|
|
|
|
# some code
|
|
return Batch(logits=..., act=..., state=None, dist=...)
|
|
|
|
After version >= 0.2.3, the keyword "policy" is reserverd and the
|
|
corresponding data will be stored into the replay buffer in numpy. For
|
|
instance,
|
|
::
|
|
|
|
# some code
|
|
return Batch(..., policy=Batch(log_prob=dist.log_prob(act)))
|
|
# and in the sampled data batch, you can directly call
|
|
# batch.policy.log_prob to get your data, although it is stored in
|
|
# np.ndarray.
|
|
"""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def learn(self, batch: Batch, **kwargs
|
|
) -> Dict[str, Union[float, List[float]]]:
|
|
"""Update policy with a given batch of data.
|
|
|
|
:return: A dict which includes loss and its corresponding label.
|
|
"""
|
|
pass
|
|
|
|
@staticmethod
|
|
def compute_episodic_return(
|
|
batch: Batch,
|
|
v_s_: Optional[Union[np.ndarray, torch.Tensor]] = None,
|
|
gamma: float = 0.99,
|
|
gae_lambda: float = 0.95,
|
|
) -> Batch:
|
|
"""Compute returns over given full-length episodes, including the
|
|
implementation of Generalized Advantage Estimator (arXiv:1506.02438).
|
|
|
|
:param batch: a data batch which contains several full-episode data
|
|
chronologically.
|
|
:type batch: :class:`~tianshou.data.Batch`
|
|
:param v_s_: the value function of all next states :math:`V(s')`.
|
|
:type v_s_: numpy.ndarray
|
|
:param float gamma: the discount factor, should be in [0, 1], defaults
|
|
to 0.99.
|
|
:param float gae_lambda: the parameter for Generalized Advantage
|
|
Estimation, should be in [0, 1], defaults to 0.95.
|
|
|
|
:return: a Batch. The result will be stored in batch.returns.
|
|
"""
|
|
rew = batch.rew
|
|
if v_s_ is None:
|
|
v_s_ = rew * 0.
|
|
else:
|
|
if not isinstance(v_s_, np.ndarray):
|
|
v_s_ = np.array(v_s_, np.float)
|
|
v_s_ = v_s_.reshape(rew.shape)
|
|
returns = np.roll(v_s_, 1, axis=0)
|
|
m = (1. - batch.done) * gamma
|
|
delta = rew + v_s_ * m - returns
|
|
m *= gae_lambda
|
|
gae = 0.
|
|
for i in range(len(rew) - 1, -1, -1):
|
|
gae = delta[i] + m[i] * gae
|
|
returns[i] += gae
|
|
batch.returns = returns
|
|
return batch
|
|
|
|
@staticmethod
|
|
def compute_nstep_return(
|
|
batch: Batch,
|
|
buffer: ReplayBuffer,
|
|
indice: np.ndarray,
|
|
target_q_fn: Callable[[ReplayBuffer, np.ndarray], torch.Tensor],
|
|
gamma: float = 0.99,
|
|
n_step: int = 1,
|
|
rew_norm: bool = False,
|
|
) -> np.ndarray:
|
|
r"""Compute n-step return for Q-learning targets:
|
|
|
|
.. math::
|
|
G_t = \sum_{i = t}^{t + n - 1} \gamma^{i - t}(1 - d_i)r_i +
|
|
\gamma^n (1 - d_{t + n}) Q_{\mathrm{target}}(s_{t + n})
|
|
|
|
, where :math:`\gamma` is the discount factor,
|
|
:math:`\gamma \in [0, 1]`, :math:`d_t` is the done flag of step
|
|
:math:`t`.
|
|
|
|
:param batch: a data batch, which is equal to buffer[indice].
|
|
:type batch: :class:`~tianshou.data.Batch`
|
|
:param buffer: a data buffer which contains several full-episode data
|
|
chronologically.
|
|
:type buffer: :class:`~tianshou.data.ReplayBuffer`
|
|
:param indice: sampled timestep.
|
|
:type indice: numpy.ndarray
|
|
:param function target_q_fn: a function receives :math:`t+n-1` step's
|
|
data and compute target Q value.
|
|
:param float gamma: the discount factor, should be in [0, 1], defaults
|
|
to 0.99.
|
|
:param int n_step: the number of estimation step, should be an int
|
|
greater than 0, defaults to 1.
|
|
:param bool rew_norm: normalize the reward to Normal(0, 1), defaults
|
|
to ``False``.
|
|
|
|
:return: a Batch. The result will be stored in batch.returns as a
|
|
torch.Tensor with shape (bsz, ).
|
|
"""
|
|
rew = buffer.rew
|
|
if rew_norm:
|
|
bfr = rew[:min(len(buffer), 1000)] # avoid large buffer
|
|
mean, std = bfr.mean(), bfr.std()
|
|
if np.isclose(std, 0):
|
|
mean, std = 0, 1
|
|
else:
|
|
mean, std = 0, 1
|
|
returns = np.zeros_like(indice)
|
|
gammas = np.zeros_like(indice) + n_step
|
|
done, buf_len = buffer.done, len(buffer)
|
|
for n in range(n_step - 1, -1, -1):
|
|
now = (indice + n) % buf_len
|
|
gammas[done[now] > 0] = n
|
|
returns[done[now] > 0] = 0
|
|
returns = (rew[now] - mean) / std + gamma * returns
|
|
terminal = (indice + n_step - 1) % buf_len
|
|
target_q = target_q_fn(buffer, terminal).squeeze()
|
|
target_q[gammas != n_step] = 0
|
|
returns = to_torch_as(returns, target_q)
|
|
gammas = to_torch_as(gamma ** gammas, target_q)
|
|
batch.returns = target_q * gammas + returns
|
|
return batch
|