Tianshou/tianshou/trainer/offpolicy.py
youkaichao 8c32d99c65
Add multi-agent example: tic-tac-toe (#122)
* make fileds with empty Batch rather than None after reset

* dummy code

* remove dummy

* add reward_length argument for collector

* Improve Batch (#126)

* make sure the key type of Batch is string, and add unit tests

* add is_empty() function and unit tests

* enable cat of mixing dict and Batch, just like stack

* bugfix for reward_length

* add get_final_reward_fn argument to collector to deal with marl

* minor polish

* remove multibuf

* minor polish

* improve and implement Batch.cat_

* bugfix for buffer.sample with field impt_weight

* restore the usage of a.cat_(b)

* fix 2 bugs in batch and add corresponding unittest

* code fix for update

* update is_empty to recognize empty over empty; bugfix for len

* bugfix for update and add testcase

* add testcase of update

* make fileds with empty Batch rather than None after reset

* dummy code

* remove dummy

* add reward_length argument for collector

* bugfix for reward_length

* add get_final_reward_fn argument to collector to deal with marl

* make sure the key type of Batch is string, and add unit tests

* add is_empty() function and unit tests

* enable cat of mixing dict and Batch, just like stack

* dummy code

* remove dummy

* add multi-agent example: tic-tac-toe

* move TicTacToeEnv to a separate file

* remove dummy MANet

* code refactor

* move tic-tac-toe example to test

* update doc with marl-example

* fix docs

* reduce the threshold

* revert

* update player id to start from 1 and change player to agent; keep coding

* add reward_length argument for collector

* Improve Batch (#128)

* minor polish

* improve and implement Batch.cat_

* bugfix for buffer.sample with field impt_weight

* restore the usage of a.cat_(b)

* fix 2 bugs in batch and add corresponding unittest

* code fix for update

* update is_empty to recognize empty over empty; bugfix for len

* bugfix for update and add testcase

* add testcase of update

* fix docs

* fix docs

* fix docs [ci skip]

* fix docs [ci skip]

Co-authored-by: Trinkle23897 <463003665@qq.com>

* refact

* re-implement Batch.stack and add testcases

* add doc for Batch.stack

* reward_metric

* modify flag

* minor fix

* reuse _create_values and refactor stack_ & cat_

* fix pep8

* fix reward stat in collector

* fix stat of collector, simplify test/base/env.py

* fix docs

* minor fix

* raise exception for stacking with partial keys and axis!=0

* minor fix

* minor fix

* minor fix

* marl-examples

* add condense; bugfix for torch.Tensor; code refactor

* marl example can run now

* enable tic tac toe with larger board size and win-size

* add test dependency

* Fix padding of inconsistent keys with Batch.stack and Batch.cat (#130)

* re-implement Batch.stack and add testcases

* add doc for Batch.stack

* reuse _create_values and refactor stack_ & cat_

* fix pep8

* fix docs

* raise exception for stacking with partial keys and axis!=0

* minor fix

* minor fix

Co-authored-by: Trinkle23897 <463003665@qq.com>

* stash

* let agent learn to play as agent 2 which is harder

* code refactor

* Improve collector (#125)

* remove multibuf

* reward_metric

* make fileds with empty Batch rather than None after reset

* many fixes and refactor
Co-authored-by: Trinkle23897 <463003665@qq.com>

* marl for tic-tac-toe and general gomoku

* update default gamma to 0.1 for tic tac toe to win earlier

* fix name typo; change default game config; add rew_norm option

* fix pep8

* test commit

* mv test dir name

* add rew flag

* fix torch.optim import error and madqn rew_norm

* remove useless kwargs

* Vector env enable select worker (#132)

* Enable selecting worker for vector env step method.

* Update collector to match new vecenv selective worker behavior.

* Bug fix.

* Fix rebase

Co-authored-by: Alexis Duburcq <alexis.duburcq@wandercraft.eu>

* show the last move of tictactoe by capital letters

* add multi-agent tutorial

* fix link

* Standardized behavior of Batch.cat and misc code refactor (#137)

* code refactor; remove unused kwargs; add reward_normalization for dqn

* bugfix for __setitem__ with torch.Tensor; add Batch.condense

* minor fix

* support cat with empty Batch

* remove the dependency of is_empty on len; specify the semantic of empty Batch by test cases

* support stack with empty Batch

* remove condense

* refactor code to reflect the shared / partial / reserved categories of keys

* add is_empty(recursive=False)

* doc fix

* docfix and bugfix for _is_batch_set

* add doc for key reservation

* bugfix for algebra operators

* fix cat with lens hint

* code refactor

* bugfix for storing None

* use ValueError instead of exception

* hide lens away from users

* add comment for __cat

* move the computation of the initial value of lens in cat_ itself.

* change the place of doc string

* doc fix for Batch doc string

* change recursive to recurse

* doc string fix

* minor fix for batch doc

* write tutorials to specify the standard of Batch (#142)

* add doc for len exceptions

* doc move; unify is_scalar_value function

* remove some issubclass check

* bugfix for shape of Batch(a=1)

* keep moving doc

* keep writing batch tutorial

* draft version of Batch tutorial done

* improving doc

* keep improving doc

* batch tutorial done

* rename _is_number

* rename _is_scalar

* shape property do not raise exception

* restore some doc string

* grammarly [ci skip]

* grammarly + fix warning of building docs

* polish docs

* trim and re-arrange batch tutorial

* go straight to the point

* minor fix for batch doc

* add shape / len in basic usage

* keep improving tutorial

* unify _to_array_with_correct_type to remove duplicate code

* delegate type convertion to Batch.__init__

* further delegate type convertion to Batch.__init__

* bugfix for setattr

* add a _parse_value function

* remove dummy function call

* polish docs

Co-authored-by: Trinkle23897 <463003665@qq.com>

* bugfix for mapolicy

* pretty code

* remove debug code; remove condense

* doc fix

* check before get_agents in tutorials/tictactoe

* tutorial

* fix

* minor fix for batch doc

* minor polish

* faster test_ttt

* improve tic-tac-toe environment

* change default epoch and step-per-epoch for tic-tac-toe

* fix mapolicy

* minor polish for mapolicy

* 90% to 80% (need to change the tutorial)

* win rate

* show step number at board

* simplify mapolicy

* minor polish for mapolicy

* remove MADQN

* fix pep8

* change legal_actions to mask (need to update docs)

* simplify maenv

* fix typo

* move basevecenv to single file

* separate RandomAgent

* update docs

* grammarly

* fix pep8

* win rate typo

* format in cheatsheet

* use bool mask directly

* update doc for boolean mask

Co-authored-by: Trinkle23897 <463003665@qq.com>
Co-authored-by: Alexis DUBURCQ <alexis.duburcq@gmail.com>
Co-authored-by: Alexis Duburcq <alexis.duburcq@wandercraft.eu>
2020-07-21 14:59:49 +08:00

142 lines
6.4 KiB
Python

import time
import tqdm
from torch.utils.tensorboard import SummaryWriter
from typing import Dict, List, Union, Callable, Optional
from tianshou.data import Collector
from tianshou.policy import BasePolicy
from tianshou.utils import tqdm_config, MovAvg
from tianshou.trainer import test_episode, gather_info
def offpolicy_trainer(
policy: BasePolicy,
train_collector: Collector,
test_collector: Collector,
max_epoch: int,
step_per_epoch: int,
collect_per_step: int,
episode_per_test: Union[int, List[int]],
batch_size: int,
update_per_step: int = 1,
train_fn: Optional[Callable[[int], None]] = None,
test_fn: Optional[Callable[[int], None]] = None,
stop_fn: Optional[Callable[[float], bool]] = None,
save_fn: Optional[Callable[[BasePolicy], None]] = None,
log_fn: Optional[Callable[[dict], None]] = None,
writer: Optional[SummaryWriter] = None,
log_interval: int = 1,
verbose: bool = True,
test_in_train: bool = True,
) -> Dict[str, Union[float, str]]:
"""A wrapper for off-policy trainer procedure.
:param policy: an instance of the :class:`~tianshou.policy.BasePolicy`
class.
:param train_collector: the collector used for training.
:type train_collector: :class:`~tianshou.data.Collector`
:param test_collector: the collector used for testing.
:type test_collector: :class:`~tianshou.data.Collector`
:param int max_epoch: the maximum of epochs for training. The training
process might be finished before reaching the ``max_epoch``.
:param int step_per_epoch: the number of step for updating policy network
in one epoch.
:param int collect_per_step: the number of frames the collector would
collect before the network update. In other words, collect some frames
and do some policy network update.
:param episode_per_test: the number of episodes for one policy evaluation.
:param int batch_size: the batch size of sample data, which is going to
feed in the policy network.
:param int update_per_step: the number of times the policy network would
be updated after frames be collected. In other words, collect some
frames and do some policy network update.
:param function train_fn: a function receives the current number of epoch
index and performs some operations at the beginning of training in this
epoch.
:param function test_fn: a function receives the current number of epoch
index and performs some operations at the beginning of testing in this
epoch.
:param function save_fn: a function for saving policy when the undiscounted
average mean reward in evaluation phase gets better.
:param function stop_fn: a function receives the average undiscounted
returns of the testing result, return a boolean which indicates whether
reaching the goal.
:param function log_fn: a function receives env info for logging.
:param torch.utils.tensorboard.SummaryWriter writer: a TensorBoard
SummaryWriter.
:param int log_interval: the log interval of the writer.
:param bool verbose: whether to print the information.
:param bool test_in_train: whether to test in the training phase.
:return: See :func:`~tianshou.trainer.gather_info`.
"""
global_step = 0
best_epoch, best_reward = -1, -1
stat = {}
start_time = time.time()
test_in_train = test_in_train and train_collector.policy == policy
for epoch in range(1, 1 + max_epoch):
# train
policy.train()
if train_fn:
train_fn(epoch)
with tqdm.tqdm(total=step_per_epoch, desc=f'Epoch #{epoch}',
**tqdm_config) as t:
while t.n < t.total:
result = train_collector.collect(n_step=collect_per_step,
log_fn=log_fn)
data = {}
if test_in_train and stop_fn and stop_fn(result['rew']):
test_result = test_episode(
policy, test_collector, test_fn,
epoch, episode_per_test)
if stop_fn and stop_fn(test_result['rew']):
if save_fn:
save_fn(policy)
for k in result.keys():
data[k] = f'{result[k]:.2f}'
t.set_postfix(**data)
return gather_info(
start_time, train_collector, test_collector,
test_result['rew'])
else:
policy.train()
if train_fn:
train_fn(epoch)
for i in range(update_per_step * min(
result['n/st'] // collect_per_step, t.total - t.n)):
global_step += 1
losses = policy.learn(train_collector.sample(batch_size))
for k in result.keys():
data[k] = f'{result[k]:.2f}'
if writer and global_step % log_interval == 0:
writer.add_scalar(
k, result[k], global_step=global_step)
for k in losses.keys():
if stat.get(k) is None:
stat[k] = MovAvg()
stat[k].add(losses[k])
data[k] = f'{stat[k].get():.6f}'
if writer and global_step % log_interval == 0:
writer.add_scalar(
k, stat[k].get(), global_step=global_step)
t.update(1)
t.set_postfix(**data)
if t.n <= t.total:
t.update()
# test
result = test_episode(
policy, test_collector, test_fn, epoch, episode_per_test)
if best_epoch == -1 or best_reward < result['rew']:
best_reward = result['rew']
best_epoch = epoch
if save_fn:
save_fn(policy)
if verbose:
print(f'Epoch #{epoch}: test_reward: {result["rew"]:.6f}, '
f'best_reward: {best_reward:.6f} in #{best_epoch}')
if stop_fn and stop_fn(best_reward):
break
return gather_info(
start_time, train_collector, test_collector, best_reward)