Tianshou/test/modelbased/test_psrl.py
Michael Panchenko 78ea013956 Tests: fixed test_psrl.py: use args.reward_threshold instead of spec
For some reason now env.spec.reward_treshold is None - some change in upstream code

Also added better pytest skip message
2024-05-06 16:16:20 +02:00

122 lines
4.6 KiB
Python

import argparse
import os
import numpy as np
import pytest
import torch
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.policy import PSRLPolicy
from tianshou.trainer import OnpolicyTrainer
from tianshou.utils import LazyLogger, TensorboardLogger, WandbLogger
try:
import envpool
except ImportError:
envpool = None
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="NChain-v0")
parser.add_argument("--reward-threshold", type=float, default=None)
parser.add_argument("--seed", type=int, default=1)
parser.add_argument("--buffer-size", type=int, default=50000)
parser.add_argument("--epoch", type=int, default=5)
parser.add_argument("--step-per-epoch", type=int, default=1000)
parser.add_argument("--episode-per-collect", type=int, default=1)
parser.add_argument("--training-num", type=int, default=1)
parser.add_argument("--test-num", type=int, default=10)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.0)
parser.add_argument("--rew-mean-prior", type=float, default=0.0)
parser.add_argument("--rew-std-prior", type=float, default=1.0)
parser.add_argument("--gamma", type=float, default=0.99)
parser.add_argument("--eps", type=float, default=0.01)
parser.add_argument("--add-done-loop", action="store_true", default=False)
parser.add_argument(
"--logger",
type=str,
default="none", # TODO: Change to "wandb" once wandb supports Gym >=0.26.0
choices=["wandb", "tensorboard", "none"],
)
return parser.parse_known_args()[0]
@pytest.mark.skipif(
envpool is None,
reason="EnvPool is not installed. If on linux, please install it (e.g. as poetry extra)",
)
def test_psrl(args: argparse.Namespace = get_args()) -> None:
# if you want to use python vector env, please refer to other test scripts
train_envs = env = envpool.make_gymnasium(args.task, num_envs=args.training_num, seed=args.seed)
test_envs = envpool.make_gymnasium(args.task, num_envs=args.test_num, seed=args.seed)
if args.reward_threshold is None:
default_reward_threshold = {"NChain-v0": 3400}
args.reward_threshold = default_reward_threshold.get(args.task, env.spec.reward_threshold)
print("reward threshold:", args.reward_threshold)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# model
n_action = args.action_shape
n_state = args.state_shape
trans_count_prior = np.ones((n_state, n_action, n_state))
rew_mean_prior = np.full((n_state, n_action), args.rew_mean_prior)
rew_std_prior = np.full((n_state, n_action), args.rew_std_prior)
policy: PSRLPolicy = PSRLPolicy(
trans_count_prior=trans_count_prior,
rew_mean_prior=rew_mean_prior,
rew_std_prior=rew_std_prior,
action_space=env.action_space,
discount_factor=args.gamma,
epsilon=args.eps,
add_done_loop=args.add_done_loop,
)
# collector
train_collector = Collector(
policy,
train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)),
exploration_noise=True,
)
train_collector.reset()
test_collector = Collector(policy, test_envs)
test_collector.reset()
# Logger
log_path = os.path.join(args.logdir, args.task, "psrl")
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
logger: WandbLogger | TensorboardLogger | LazyLogger
if args.logger == "wandb":
logger = WandbLogger(save_interval=1, project="psrl", name="wandb_test", config=args)
logger.load(writer)
elif args.logger == "tensorboard":
logger = TensorboardLogger(writer)
else:
logger = LazyLogger()
def stop_fn(mean_rewards: float) -> bool:
return mean_rewards >= args.reward_threshold
train_collector.collect(n_step=args.buffer_size, random=True)
# trainer, test it without logger
result = OnpolicyTrainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
repeat_per_collect=1,
episode_per_test=args.test_num,
batch_size=0,
episode_per_collect=args.episode_per_collect,
stop_fn=stop_fn,
logger=logger,
test_in_train=False,
).run()
assert result.best_reward >= args.reward_threshold