Tianshou/tianshou/data/utils/converter.py
Michael Panchenko 3a1bc18add
Method to compute actions from observations (#991)
This PR adds a new method for getting actions from an env's observation
and info. This is useful for standard inference and stands in contrast
to batch-based methods that are currently used in training and
evaluation. Without this, users have to do some kind of gymnastics to
actually perform inference with a trained policy. I have also added a
test for the new method.

In future PRs, this method should be included in the examples (in the
the "watch" section).

To add this required improving multiple typing things and, importantly,
_simplifying the signature of `forward` in many policies!_ This is a
**breaking change**, but it will likely affect no users. The `input`
parameter of forward was a rather hacky mechanism, I believe it is good
that it's gone now. It will also help with #948 .

The main functional change is the addition of `compute_action` to
`BasePolicy`.

Other minor changes:
- improvements in typing
- updated PR and Issue templates
- Improved handling of `max_action_num`

Closes #981
2023-11-16 17:27:53 +00:00

165 lines
5.8 KiB
Python

import pickle
from copy import deepcopy
from numbers import Number
from typing import Any, Union, no_type_check
import h5py
import numpy as np
import torch
from tianshou.data.batch import Batch, _parse_value
# TODO: confusing name, could actually return a batch...
# Overrides and generic types should be added
@no_type_check
def to_numpy(x: Any) -> Batch | np.ndarray:
"""Return an object without torch.Tensor."""
if isinstance(x, torch.Tensor): # most often case
return x.detach().cpu().numpy()
if isinstance(x, np.ndarray): # second often case
return x
if isinstance(x, np.number | np.bool_ | Number):
return np.asanyarray(x)
if x is None:
return np.array(None, dtype=object)
if isinstance(x, dict | Batch):
x = Batch(x) if isinstance(x, dict) else deepcopy(x)
x.to_numpy()
return x
if isinstance(x, list | tuple):
return to_numpy(_parse_value(x))
# fallback
return np.asanyarray(x)
@no_type_check
def to_torch(
x: Any,
dtype: torch.dtype | None = None,
device: str | int | torch.device = "cpu",
) -> Batch | torch.Tensor:
"""Return an object without np.ndarray."""
if isinstance(x, np.ndarray) and issubclass(
x.dtype.type,
np.bool_ | np.number,
): # most often case
x = torch.from_numpy(x).to(device)
if dtype is not None:
x = x.type(dtype)
return x
if isinstance(x, torch.Tensor): # second often case
if dtype is not None:
x = x.type(dtype)
return x.to(device)
if isinstance(x, np.number | np.bool_ | Number):
return to_torch(np.asanyarray(x), dtype, device)
if isinstance(x, dict | Batch):
x = Batch(x, copy=True) if isinstance(x, dict) else deepcopy(x)
x.to_torch(dtype, device)
return x
if isinstance(x, list | tuple):
return to_torch(_parse_value(x), dtype, device)
# fallback
raise TypeError(f"object {x} cannot be converted to torch.")
@no_type_check
def to_torch_as(x: Any, y: torch.Tensor) -> Batch | torch.Tensor:
"""Return an object without np.ndarray.
Same as ``to_torch(x, dtype=y.dtype, device=y.device)``.
"""
assert isinstance(y, torch.Tensor)
return to_torch(x, dtype=y.dtype, device=y.device)
# Note: object is used as a proxy for objects that can be pickled
# Note: mypy does not support cyclic definition currently
Hdf5ConvertibleValues = Union[
int,
float,
Batch,
np.ndarray,
torch.Tensor,
object,
"Hdf5ConvertibleType",
]
Hdf5ConvertibleType = dict[str, Hdf5ConvertibleValues]
def to_hdf5(x: Hdf5ConvertibleType, y: h5py.Group, compression: str | None = None) -> None:
"""Copy object into HDF5 group."""
def to_hdf5_via_pickle(
x: object,
y: h5py.Group,
key: str,
compression: str | None = None,
) -> None:
"""Pickle, convert to numpy array and write to HDF5 dataset."""
data = np.frombuffer(pickle.dumps(x), dtype=np.byte)
y.create_dataset(key, data=data, compression=compression)
for k, v in x.items():
if isinstance(v, Batch | dict):
# dicts and batches are both represented by groups
subgrp = y.create_group(k)
if isinstance(v, Batch):
subgrp_data = v.__getstate__()
subgrp.attrs["__data_type__"] = "Batch"
else:
subgrp_data = v
to_hdf5(subgrp_data, subgrp, compression=compression)
elif isinstance(v, torch.Tensor):
# PyTorch tensors are written to datasets
y.create_dataset(k, data=to_numpy(v), compression=compression)
y[k].attrs["__data_type__"] = "Tensor"
elif isinstance(v, np.ndarray):
try:
# NumPy arrays are written to datasets
y.create_dataset(k, data=v, compression=compression)
y[k].attrs["__data_type__"] = "ndarray"
except TypeError:
# If data type is not supported by HDF5 fall back to pickle.
# This happens if dtype=object (e.g. due to entries being None)
# and possibly in other cases like structured arrays.
try:
to_hdf5_via_pickle(v, y, k, compression=compression)
except Exception as exception:
raise RuntimeError(
f"Attempted to pickle {v.__class__.__name__} due to "
"data type not supported by HDF5 and failed.",
) from exception
y[k].attrs["__data_type__"] = "pickled_ndarray"
elif isinstance(v, int | float):
# ints and floats are stored as attributes of groups
y.attrs[k] = v
else: # resort to pickle for any other type of object
try:
to_hdf5_via_pickle(v, y, k, compression=compression)
except Exception as exception:
raise NotImplementedError(
f"No conversion to HDF5 for object of type '{type(v)}' "
"implemented and fallback to pickle failed.",
) from exception
y[k].attrs["__data_type__"] = v.__class__.__name__
def from_hdf5(x: h5py.Group, device: str | None = None) -> Hdf5ConvertibleValues:
"""Restore object from HDF5 group."""
if isinstance(x, h5py.Dataset):
# handle datasets
if x.attrs["__data_type__"] == "ndarray":
return np.array(x)
if x.attrs["__data_type__"] == "Tensor":
return torch.tensor(x, device=device)
return pickle.loads(x[()])
# handle groups representing a dict or a Batch
y = dict(x.attrs.items())
data_type = y.pop("__data_type__", None)
for k, v in x.items():
y[k] = from_hdf5(v, device)
return Batch(y) if data_type == "Batch" else y