Michael Panchenko 3a1bc18add
Method to compute actions from observations (#991)
This PR adds a new method for getting actions from an env's observation
and info. This is useful for standard inference and stands in contrast
to batch-based methods that are currently used in training and
evaluation. Without this, users have to do some kind of gymnastics to
actually perform inference with a trained policy. I have also added a
test for the new method.

In future PRs, this method should be included in the examples (in the
the "watch" section).

To add this required improving multiple typing things and, importantly,
_simplifying the signature of `forward` in many policies!_ This is a
**breaking change**, but it will likely affect no users. The `input`
parameter of forward was a rather hacky mechanism, I believe it is good
that it's gone now. It will also help with #948 .

The main functional change is the addition of `compute_action` to
`BasePolicy`.

Other minor changes:
- improvements in typing
- updated PR and Issue templates
- Improved handling of `max_action_num`

Closes #981
2023-11-16 17:27:53 +00:00

191 lines
7.1 KiB
Python

from typing import Any, Literal, cast
import gymnasium as gym
import numpy as np
import torch
from tianshou.data import Batch, ReplayBuffer, to_numpy, to_torch, to_torch_as
from tianshou.data.batch import BatchProtocol
from tianshou.data.types import (
BatchWithReturnsProtocol,
ModelOutputBatchProtocol,
ObsBatchProtocol,
RolloutBatchProtocol,
)
from tianshou.policy import DQNPolicy
from tianshou.policy.base import TLearningRateScheduler
from tianshou.utils.net.common import BranchingNet
class BranchingDQNPolicy(DQNPolicy):
"""Implementation of the Branching dual Q network arXiv:1711.08946.
:param model: BranchingNet mapping (obs, state, info) -> logits.
:param optim: a torch.optim for optimizing the model.
:param discount_factor: in [0, 1].
:param estimation_step: the number of steps to look ahead.
:param target_update_freq: the target network update frequency (0 if
you do not use the target network).
:param reward_normalization: normalize the **returns** to Normal(0, 1).
TODO: rename to return_normalization?
:param is_double: use double dqn.
:param clip_loss_grad: clip the gradient of the loss in accordance
with nature14236; this amounts to using the Huber loss instead of
the MSE loss.
:param observation_space: Env's observation space.
:param lr_scheduler: if not None, will be called in `policy.update()`.
.. seealso::
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
explanation.
"""
def __init__(
self,
*,
model: BranchingNet,
optim: torch.optim.Optimizer,
action_space: gym.spaces.Discrete,
discount_factor: float = 0.99,
estimation_step: int = 1,
target_update_freq: int = 0,
reward_normalization: bool = False,
is_double: bool = True,
clip_loss_grad: bool = False,
observation_space: gym.Space | None = None,
lr_scheduler: TLearningRateScheduler | None = None,
) -> None:
assert (
estimation_step == 1
), f"N-step bigger than one is not supported by BDQ but got: {estimation_step}"
super().__init__(
model=model,
optim=optim,
action_space=action_space,
discount_factor=discount_factor,
estimation_step=estimation_step,
target_update_freq=target_update_freq,
reward_normalization=reward_normalization,
is_double=is_double,
clip_loss_grad=clip_loss_grad,
observation_space=observation_space,
lr_scheduler=lr_scheduler,
)
self.model = cast(BranchingNet, self.model)
# TODO: this used to be a public property called max_action_num,
# but it collides with an attr of the same name in base class
@property
def _action_per_branch(self) -> int:
return self.model.action_per_branch # type: ignore
@property
def num_branches(self) -> int:
return self.model.num_branches # type: ignore
def _target_q(self, buffer: ReplayBuffer, indices: np.ndarray) -> torch.Tensor:
obs_next_batch = Batch(
obs=buffer[indices].obs_next,
info=[None] * len(indices),
) # obs_next: s_{t+n}
result = self(obs_next_batch)
if self._target:
# target_Q = Q_old(s_, argmax(Q_new(s_, *)))
target_q = self(obs_next_batch, model="model_old").logits
else:
target_q = result.logits
if self.is_double:
act = np.expand_dims(self(obs_next_batch).act, -1)
act = to_torch(act, dtype=torch.long, device=target_q.device)
else:
act = target_q.max(-1).indices.unsqueeze(-1)
return torch.gather(target_q, -1, act).squeeze()
def _compute_return(
self,
batch: RolloutBatchProtocol,
buffer: ReplayBuffer,
indice: np.ndarray,
gamma: float = 0.99,
) -> BatchWithReturnsProtocol:
rew = batch.rew
with torch.no_grad():
target_q_torch = self._target_q(buffer, indice) # (bsz, ?)
target_q = to_numpy(target_q_torch)
end_flag = buffer.done.copy()
end_flag[buffer.unfinished_index()] = True
end_flag = end_flag[indice]
mean_target_q = np.mean(target_q, -1) if len(target_q.shape) > 1 else target_q
_target_q = rew + gamma * mean_target_q * (1 - end_flag)
target_q = np.repeat(_target_q[..., None], self.num_branches, axis=-1)
target_q = np.repeat(target_q[..., None], self._action_per_branch, axis=-1)
batch.returns = to_torch_as(target_q, target_q_torch)
if hasattr(batch, "weight"): # prio buffer update
batch.weight = to_torch_as(batch.weight, target_q_torch)
return cast(BatchWithReturnsProtocol, batch)
def process_fn(
self,
batch: RolloutBatchProtocol,
buffer: ReplayBuffer,
indices: np.ndarray,
) -> BatchWithReturnsProtocol:
"""Compute the 1-step return for BDQ targets."""
return self._compute_return(batch, buffer, indices)
def forward(
self,
batch: ObsBatchProtocol,
state: dict | BatchProtocol | np.ndarray | None = None,
model: Literal["model", "model_old"] = "model",
**kwargs: Any,
) -> ModelOutputBatchProtocol:
model = getattr(self, model)
obs = batch.obs
# TODO: this is very contrived, see also iqn.py
obs_next = obs.obs if hasattr(obs, "obs") else obs
logits, hidden = model(obs_next, state=state, info=batch.info)
act = to_numpy(logits.max(dim=-1)[1])
result = Batch(logits=logits, act=act, state=hidden)
return cast(ModelOutputBatchProtocol, result)
def learn(self, batch: RolloutBatchProtocol, *args: Any, **kwargs: Any) -> dict[str, float]:
if self._target and self._iter % self.freq == 0:
self.sync_weight()
self.optim.zero_grad()
weight = batch.pop("weight", 1.0)
act = to_torch(batch.act, dtype=torch.long, device=batch.returns.device)
q = self(batch).logits
act_mask = torch.zeros_like(q)
act_mask = act_mask.scatter_(-1, act.unsqueeze(-1), 1)
act_q = q * act_mask
returns = batch.returns
returns = returns * act_mask
td_error = returns - act_q
loss = (td_error.pow(2).sum(-1).mean(-1) * weight).mean()
batch.weight = td_error.sum(-1).sum(-1) # prio-buffer
loss.backward()
self.optim.step()
self._iter += 1
return {"loss": loss.item()}
def exploration_noise(
self,
act: np.ndarray | BatchProtocol,
batch: RolloutBatchProtocol,
) -> np.ndarray | BatchProtocol:
if isinstance(act, np.ndarray) and not np.isclose(self.eps, 0.0):
bsz = len(act)
rand_mask = np.random.rand(bsz) < self.eps
rand_act = np.random.randint(
low=0,
high=self._action_per_branch,
size=(bsz, act.shape[-1]),
)
if hasattr(batch.obs, "mask"):
rand_act += batch.obs.mask
act[rand_mask] = rand_act[rand_mask]
return act