This PR adds a new method for getting actions from an env's observation and info. This is useful for standard inference and stands in contrast to batch-based methods that are currently used in training and evaluation. Without this, users have to do some kind of gymnastics to actually perform inference with a trained policy. I have also added a test for the new method. In future PRs, this method should be included in the examples (in the the "watch" section). To add this required improving multiple typing things and, importantly, _simplifying the signature of `forward` in many policies!_ This is a **breaking change**, but it will likely affect no users. The `input` parameter of forward was a rather hacky mechanism, I believe it is good that it's gone now. It will also help with #948 . The main functional change is the addition of `compute_action` to `BasePolicy`. Other minor changes: - improvements in typing - updated PR and Issue templates - Improved handling of `max_action_num` Closes #981
242 lines
8.6 KiB
Python
242 lines
8.6 KiB
Python
from copy import deepcopy
|
|
from typing import Any, Literal, Self, cast
|
|
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
import torch
|
|
|
|
from tianshou.data import Batch, ReplayBuffer, to_numpy, to_torch_as
|
|
from tianshou.data.batch import BatchProtocol
|
|
from tianshou.data.types import (
|
|
BatchWithReturnsProtocol,
|
|
ModelOutputBatchProtocol,
|
|
ObsBatchProtocol,
|
|
RolloutBatchProtocol,
|
|
)
|
|
from tianshou.policy import BasePolicy
|
|
from tianshou.policy.base import TLearningRateScheduler
|
|
|
|
|
|
class DQNPolicy(BasePolicy):
|
|
"""Implementation of Deep Q Network. arXiv:1312.5602.
|
|
|
|
Implementation of Double Q-Learning. arXiv:1509.06461.
|
|
|
|
Implementation of Dueling DQN. arXiv:1511.06581 (the dueling DQN is
|
|
implemented in the network side, not here).
|
|
|
|
:param model: a model following the rules in
|
|
:class:`~tianshou.policy.BasePolicy`. (s -> logits)
|
|
:param optim: a torch.optim for optimizing the model.
|
|
:param discount_factor: in [0, 1].
|
|
:param estimation_step: the number of steps to look ahead.
|
|
:param target_update_freq: the target network update frequency (0 if
|
|
you do not use the target network).
|
|
:param reward_normalization: normalize the **returns** to Normal(0, 1).
|
|
TODO: rename to return_normalization?
|
|
:param is_double: use double dqn.
|
|
:param clip_loss_grad: clip the gradient of the loss in accordance
|
|
with nature14236; this amounts to using the Huber loss instead of
|
|
the MSE loss.
|
|
:param observation_space: Env's observation space.
|
|
:param lr_scheduler: if not None, will be called in `policy.update()`.
|
|
|
|
.. seealso::
|
|
|
|
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
|
|
explanation.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
model: torch.nn.Module,
|
|
optim: torch.optim.Optimizer,
|
|
# TODO: type violates Liskov substitution principle
|
|
action_space: gym.spaces.Discrete,
|
|
discount_factor: float = 0.99,
|
|
estimation_step: int = 1,
|
|
target_update_freq: int = 0,
|
|
reward_normalization: bool = False,
|
|
is_double: bool = True,
|
|
clip_loss_grad: bool = False,
|
|
observation_space: gym.Space | None = None,
|
|
lr_scheduler: TLearningRateScheduler | None = None,
|
|
) -> None:
|
|
super().__init__(
|
|
action_space=action_space,
|
|
observation_space=observation_space,
|
|
action_scaling=False,
|
|
action_bound_method=None,
|
|
lr_scheduler=lr_scheduler,
|
|
)
|
|
self.model = model
|
|
self.optim = optim
|
|
self.eps = 0.0
|
|
assert (
|
|
0.0 <= discount_factor <= 1.0
|
|
), f"discount factor should be in [0, 1] but got: {discount_factor}"
|
|
self.gamma = discount_factor
|
|
assert (
|
|
estimation_step > 0
|
|
), f"estimation_step should be greater than 0 but got: {estimation_step}"
|
|
self.n_step = estimation_step
|
|
self._target = target_update_freq > 0
|
|
self.freq = target_update_freq
|
|
self._iter = 0
|
|
if self._target:
|
|
self.model_old = deepcopy(self.model)
|
|
self.model_old.eval()
|
|
self.rew_norm = reward_normalization
|
|
self.is_double = is_double
|
|
self.clip_loss_grad = clip_loss_grad
|
|
|
|
# TODO: set in forward, fix this!
|
|
self.max_action_num: int | None = None
|
|
|
|
def set_eps(self, eps: float) -> None:
|
|
"""Set the eps for epsilon-greedy exploration."""
|
|
self.eps = eps
|
|
|
|
def train(self, mode: bool = True) -> Self:
|
|
"""Set the module in training mode, except for the target network."""
|
|
self.training = mode
|
|
self.model.train(mode)
|
|
return self
|
|
|
|
def sync_weight(self) -> None:
|
|
"""Synchronize the weight for the target network."""
|
|
self.model_old.load_state_dict(self.model.state_dict())
|
|
|
|
def _target_q(self, buffer: ReplayBuffer, indices: np.ndarray) -> torch.Tensor:
|
|
obs_next_batch = Batch(
|
|
obs=buffer[indices].obs_next,
|
|
info=[None] * len(indices),
|
|
) # obs_next: s_{t+n}
|
|
result = self(obs_next_batch)
|
|
if self._target:
|
|
# target_Q = Q_old(s_, argmax(Q_new(s_, *)))
|
|
target_q = self(obs_next_batch, model="model_old").logits
|
|
else:
|
|
target_q = result.logits
|
|
if self.is_double:
|
|
return target_q[np.arange(len(result.act)), result.act]
|
|
# Nature DQN, over estimate
|
|
return target_q.max(dim=1)[0]
|
|
|
|
def process_fn(
|
|
self,
|
|
batch: RolloutBatchProtocol,
|
|
buffer: ReplayBuffer,
|
|
indices: np.ndarray,
|
|
) -> BatchWithReturnsProtocol:
|
|
"""Compute the n-step return for Q-learning targets.
|
|
|
|
More details can be found at
|
|
:meth:`~tianshou.policy.BasePolicy.compute_nstep_return`.
|
|
"""
|
|
return self.compute_nstep_return(
|
|
batch=batch,
|
|
buffer=buffer,
|
|
indices=indices,
|
|
target_q_fn=self._target_q,
|
|
gamma=self.gamma,
|
|
n_step=self.n_step,
|
|
rew_norm=self.rew_norm,
|
|
)
|
|
|
|
def compute_q_value(self, logits: torch.Tensor, mask: np.ndarray | None) -> torch.Tensor:
|
|
"""Compute the q value based on the network's raw output and action mask."""
|
|
if mask is not None:
|
|
# the masked q value should be smaller than logits.min()
|
|
min_value = logits.min() - logits.max() - 1.0
|
|
logits = logits + to_torch_as(1 - mask, logits) * min_value
|
|
return logits
|
|
|
|
def forward(
|
|
self,
|
|
batch: ObsBatchProtocol,
|
|
state: dict | BatchProtocol | np.ndarray | None = None,
|
|
model: Literal["model", "model_old"] = "model",
|
|
**kwargs: Any,
|
|
) -> ModelOutputBatchProtocol:
|
|
"""Compute action over the given batch data.
|
|
|
|
If you need to mask the action, please add a "mask" into batch.obs, for
|
|
example, if we have an environment that has "0/1/2" three actions:
|
|
::
|
|
|
|
batch == Batch(
|
|
obs=Batch(
|
|
obs="original obs, with batch_size=1 for demonstration",
|
|
mask=np.array([[False, True, False]]),
|
|
# action 1 is available
|
|
# action 0 and 2 are unavailable
|
|
),
|
|
...
|
|
)
|
|
|
|
:return: A :class:`~tianshou.data.Batch` which has 3 keys:
|
|
|
|
* ``act`` the action.
|
|
* ``logits`` the network's raw output.
|
|
* ``state`` the hidden state.
|
|
|
|
.. seealso::
|
|
|
|
Please refer to :meth:`~tianshou.policy.BasePolicy.forward` for
|
|
more detailed explanation.
|
|
"""
|
|
model = getattr(self, model)
|
|
obs = batch.obs
|
|
# TODO: this is convoluted! See also other places where this is done.
|
|
obs_next = obs.obs if hasattr(obs, "obs") else obs
|
|
logits, hidden = model(obs_next, state=state, info=batch.info)
|
|
q = self.compute_q_value(logits, getattr(obs, "mask", None))
|
|
if self.max_action_num is None:
|
|
self.max_action_num = q.shape[1]
|
|
act = to_numpy(q.max(dim=1)[1])
|
|
result = Batch(logits=logits, act=act, state=hidden)
|
|
return cast(ModelOutputBatchProtocol, result)
|
|
|
|
def learn(self, batch: RolloutBatchProtocol, *args: Any, **kwargs: Any) -> dict[str, float]:
|
|
if self._target and self._iter % self.freq == 0:
|
|
self.sync_weight()
|
|
self.optim.zero_grad()
|
|
weight = batch.pop("weight", 1.0)
|
|
q = self(batch).logits
|
|
q = q[np.arange(len(q)), batch.act]
|
|
returns = to_torch_as(batch.returns.flatten(), q)
|
|
td_error = returns - q
|
|
|
|
if self.clip_loss_grad:
|
|
y = q.reshape(-1, 1)
|
|
t = returns.reshape(-1, 1)
|
|
loss = torch.nn.functional.huber_loss(y, t, reduction="mean")
|
|
else:
|
|
loss = (td_error.pow(2) * weight).mean()
|
|
|
|
batch.weight = td_error # prio-buffer
|
|
loss.backward()
|
|
self.optim.step()
|
|
self._iter += 1
|
|
return {"loss": loss.item()}
|
|
|
|
def exploration_noise(
|
|
self,
|
|
act: np.ndarray | BatchProtocol,
|
|
batch: RolloutBatchProtocol,
|
|
) -> np.ndarray | BatchProtocol:
|
|
if isinstance(act, np.ndarray) and not np.isclose(self.eps, 0.0):
|
|
bsz = len(act)
|
|
rand_mask = np.random.rand(bsz) < self.eps
|
|
assert (
|
|
self.max_action_num is not None
|
|
), "Can't call this method before max_action_num was set in first forward"
|
|
q = np.random.rand(bsz, self.max_action_num) # [0, 1]
|
|
if hasattr(batch.obs, "mask"):
|
|
q += batch.obs.mask
|
|
rand_act = q.argmax(axis=1)
|
|
act[rand_mask] = rand_act[rand_mask]
|
|
return act
|