Michael Panchenko 3a1bc18add
Method to compute actions from observations (#991)
This PR adds a new method for getting actions from an env's observation
and info. This is useful for standard inference and stands in contrast
to batch-based methods that are currently used in training and
evaluation. Without this, users have to do some kind of gymnastics to
actually perform inference with a trained policy. I have also added a
test for the new method.

In future PRs, this method should be included in the examples (in the
the "watch" section).

To add this required improving multiple typing things and, importantly,
_simplifying the signature of `forward` in many policies!_ This is a
**breaking change**, but it will likely affect no users. The `input`
parameter of forward was a rather hacky mechanism, I believe it is good
that it's gone now. It will also help with #948 .

The main functional change is the addition of `compute_action` to
`BasePolicy`.

Other minor changes:
- improvements in typing
- updated PR and Issue templates
- Improved handling of `max_action_num`

Closes #981
2023-11-16 17:27:53 +00:00

242 lines
8.6 KiB
Python

from copy import deepcopy
from typing import Any, Literal, Self, cast
import gymnasium as gym
import numpy as np
import torch
from tianshou.data import Batch, ReplayBuffer, to_numpy, to_torch_as
from tianshou.data.batch import BatchProtocol
from tianshou.data.types import (
BatchWithReturnsProtocol,
ModelOutputBatchProtocol,
ObsBatchProtocol,
RolloutBatchProtocol,
)
from tianshou.policy import BasePolicy
from tianshou.policy.base import TLearningRateScheduler
class DQNPolicy(BasePolicy):
"""Implementation of Deep Q Network. arXiv:1312.5602.
Implementation of Double Q-Learning. arXiv:1509.06461.
Implementation of Dueling DQN. arXiv:1511.06581 (the dueling DQN is
implemented in the network side, not here).
:param model: a model following the rules in
:class:`~tianshou.policy.BasePolicy`. (s -> logits)
:param optim: a torch.optim for optimizing the model.
:param discount_factor: in [0, 1].
:param estimation_step: the number of steps to look ahead.
:param target_update_freq: the target network update frequency (0 if
you do not use the target network).
:param reward_normalization: normalize the **returns** to Normal(0, 1).
TODO: rename to return_normalization?
:param is_double: use double dqn.
:param clip_loss_grad: clip the gradient of the loss in accordance
with nature14236; this amounts to using the Huber loss instead of
the MSE loss.
:param observation_space: Env's observation space.
:param lr_scheduler: if not None, will be called in `policy.update()`.
.. seealso::
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
explanation.
"""
def __init__(
self,
*,
model: torch.nn.Module,
optim: torch.optim.Optimizer,
# TODO: type violates Liskov substitution principle
action_space: gym.spaces.Discrete,
discount_factor: float = 0.99,
estimation_step: int = 1,
target_update_freq: int = 0,
reward_normalization: bool = False,
is_double: bool = True,
clip_loss_grad: bool = False,
observation_space: gym.Space | None = None,
lr_scheduler: TLearningRateScheduler | None = None,
) -> None:
super().__init__(
action_space=action_space,
observation_space=observation_space,
action_scaling=False,
action_bound_method=None,
lr_scheduler=lr_scheduler,
)
self.model = model
self.optim = optim
self.eps = 0.0
assert (
0.0 <= discount_factor <= 1.0
), f"discount factor should be in [0, 1] but got: {discount_factor}"
self.gamma = discount_factor
assert (
estimation_step > 0
), f"estimation_step should be greater than 0 but got: {estimation_step}"
self.n_step = estimation_step
self._target = target_update_freq > 0
self.freq = target_update_freq
self._iter = 0
if self._target:
self.model_old = deepcopy(self.model)
self.model_old.eval()
self.rew_norm = reward_normalization
self.is_double = is_double
self.clip_loss_grad = clip_loss_grad
# TODO: set in forward, fix this!
self.max_action_num: int | None = None
def set_eps(self, eps: float) -> None:
"""Set the eps for epsilon-greedy exploration."""
self.eps = eps
def train(self, mode: bool = True) -> Self:
"""Set the module in training mode, except for the target network."""
self.training = mode
self.model.train(mode)
return self
def sync_weight(self) -> None:
"""Synchronize the weight for the target network."""
self.model_old.load_state_dict(self.model.state_dict())
def _target_q(self, buffer: ReplayBuffer, indices: np.ndarray) -> torch.Tensor:
obs_next_batch = Batch(
obs=buffer[indices].obs_next,
info=[None] * len(indices),
) # obs_next: s_{t+n}
result = self(obs_next_batch)
if self._target:
# target_Q = Q_old(s_, argmax(Q_new(s_, *)))
target_q = self(obs_next_batch, model="model_old").logits
else:
target_q = result.logits
if self.is_double:
return target_q[np.arange(len(result.act)), result.act]
# Nature DQN, over estimate
return target_q.max(dim=1)[0]
def process_fn(
self,
batch: RolloutBatchProtocol,
buffer: ReplayBuffer,
indices: np.ndarray,
) -> BatchWithReturnsProtocol:
"""Compute the n-step return for Q-learning targets.
More details can be found at
:meth:`~tianshou.policy.BasePolicy.compute_nstep_return`.
"""
return self.compute_nstep_return(
batch=batch,
buffer=buffer,
indices=indices,
target_q_fn=self._target_q,
gamma=self.gamma,
n_step=self.n_step,
rew_norm=self.rew_norm,
)
def compute_q_value(self, logits: torch.Tensor, mask: np.ndarray | None) -> torch.Tensor:
"""Compute the q value based on the network's raw output and action mask."""
if mask is not None:
# the masked q value should be smaller than logits.min()
min_value = logits.min() - logits.max() - 1.0
logits = logits + to_torch_as(1 - mask, logits) * min_value
return logits
def forward(
self,
batch: ObsBatchProtocol,
state: dict | BatchProtocol | np.ndarray | None = None,
model: Literal["model", "model_old"] = "model",
**kwargs: Any,
) -> ModelOutputBatchProtocol:
"""Compute action over the given batch data.
If you need to mask the action, please add a "mask" into batch.obs, for
example, if we have an environment that has "0/1/2" three actions:
::
batch == Batch(
obs=Batch(
obs="original obs, with batch_size=1 for demonstration",
mask=np.array([[False, True, False]]),
# action 1 is available
# action 0 and 2 are unavailable
),
...
)
:return: A :class:`~tianshou.data.Batch` which has 3 keys:
* ``act`` the action.
* ``logits`` the network's raw output.
* ``state`` the hidden state.
.. seealso::
Please refer to :meth:`~tianshou.policy.BasePolicy.forward` for
more detailed explanation.
"""
model = getattr(self, model)
obs = batch.obs
# TODO: this is convoluted! See also other places where this is done.
obs_next = obs.obs if hasattr(obs, "obs") else obs
logits, hidden = model(obs_next, state=state, info=batch.info)
q = self.compute_q_value(logits, getattr(obs, "mask", None))
if self.max_action_num is None:
self.max_action_num = q.shape[1]
act = to_numpy(q.max(dim=1)[1])
result = Batch(logits=logits, act=act, state=hidden)
return cast(ModelOutputBatchProtocol, result)
def learn(self, batch: RolloutBatchProtocol, *args: Any, **kwargs: Any) -> dict[str, float]:
if self._target and self._iter % self.freq == 0:
self.sync_weight()
self.optim.zero_grad()
weight = batch.pop("weight", 1.0)
q = self(batch).logits
q = q[np.arange(len(q)), batch.act]
returns = to_torch_as(batch.returns.flatten(), q)
td_error = returns - q
if self.clip_loss_grad:
y = q.reshape(-1, 1)
t = returns.reshape(-1, 1)
loss = torch.nn.functional.huber_loss(y, t, reduction="mean")
else:
loss = (td_error.pow(2) * weight).mean()
batch.weight = td_error # prio-buffer
loss.backward()
self.optim.step()
self._iter += 1
return {"loss": loss.item()}
def exploration_noise(
self,
act: np.ndarray | BatchProtocol,
batch: RolloutBatchProtocol,
) -> np.ndarray | BatchProtocol:
if isinstance(act, np.ndarray) and not np.isclose(self.eps, 0.0):
bsz = len(act)
rand_mask = np.random.rand(bsz) < self.eps
assert (
self.max_action_num is not None
), "Can't call this method before max_action_num was set in first forward"
q = np.random.rand(bsz, self.max_action_num) # [0, 1]
if hasattr(batch.obs, "mask"):
q += batch.obs.mask
rand_act = q.argmax(axis=1)
act[rand_mask] = rand_act[rand_mask]
return act