Michael Panchenko 3a1bc18add
Method to compute actions from observations (#991)
This PR adds a new method for getting actions from an env's observation
and info. This is useful for standard inference and stands in contrast
to batch-based methods that are currently used in training and
evaluation. Without this, users have to do some kind of gymnastics to
actually perform inference with a trained policy. I have also added a
test for the new method.

In future PRs, this method should be included in the examples (in the
the "watch" section).

To add this required improving multiple typing things and, importantly,
_simplifying the signature of `forward` in many policies!_ This is a
**breaking change**, but it will likely affect no users. The `input`
parameter of forward was a rather hacky mechanism, I believe it is good
that it's gone now. It will also help with #948 .

The main functional change is the addition of `compute_action` to
`BasePolicy`.

Other minor changes:
- improvements in typing
- updated PR and Issue templates
- Improved handling of `max_action_num`

Closes #981
2023-11-16 17:27:53 +00:00

151 lines
6.1 KiB
Python

from copy import deepcopy
from typing import Any, Literal, Self
import gymnasium as gym
import numpy as np
import torch
from tianshou.data import Batch, ReplayBuffer
from tianshou.data.types import RolloutBatchProtocol
from tianshou.exploration import BaseNoise
from tianshou.policy import DDPGPolicy
from tianshou.policy.base import TLearningRateScheduler
from tianshou.utils.optim import clone_optimizer
class TD3Policy(DDPGPolicy):
"""Implementation of TD3, arXiv:1802.09477.
:param actor: the actor network following the rules in
:class:`~tianshou.policy.BasePolicy`. (s -> logits)
:param actor_optim: the optimizer for actor network.
:param critic: the first critic network. (s, a -> Q(s, a))
:param critic_optim: the optimizer for the first critic network.
:param action_space: Env's action space. Should be gym.spaces.Box.
:param critic2: the second critic network. (s, a -> Q(s, a)).
If None, use the same network as critic (via deepcopy).
:param critic2_optim: the optimizer for the second critic network.
If None, clone critic_optim to use for critic2.parameters().
:param tau: param for soft update of the target network.
:param gamma: discount factor, in [0, 1].
:param exploration_noise: add noise to action for exploration.
This is useful when solving "hard exploration" problems.
"default" is equivalent to GaussianNoise(sigma=0.1).
:param policy_noise: the noise used in updating policy network.
:param update_actor_freq: the update frequency of actor network.
:param noise_clip: the clipping range used in updating policy network.
:param observation_space: Env's observation space.
:param action_scaling: if True, scale the action from [-1, 1] to the range
of action_space. Only used if the action_space is continuous.
:param action_bound_method: method to bound action to range [-1, 1].
Only used if the action_space is continuous.
:param lr_scheduler: a learning rate scheduler that adjusts the learning rate
in optimizer in each policy.update()
.. seealso::
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
explanation.
"""
def __init__(
self,
*,
actor: torch.nn.Module,
actor_optim: torch.optim.Optimizer,
critic: torch.nn.Module,
critic_optim: torch.optim.Optimizer,
action_space: gym.Space,
critic2: torch.nn.Module | None = None,
critic2_optim: torch.optim.Optimizer | None = None,
tau: float = 0.005,
gamma: float = 0.99,
exploration_noise: BaseNoise | Literal["default"] | None = "default",
policy_noise: float = 0.2,
update_actor_freq: int = 2,
noise_clip: float = 0.5,
estimation_step: int = 1,
observation_space: gym.Space | None = None,
action_scaling: bool = True,
action_bound_method: Literal["clip"] | None = "clip",
lr_scheduler: TLearningRateScheduler | None = None,
) -> None:
# TODO: reduce duplication with SAC.
# Some intermediate class, like TwoCriticPolicy?
super().__init__(
actor=actor,
actor_optim=actor_optim,
critic=critic,
critic_optim=critic_optim,
action_space=action_space,
tau=tau,
gamma=gamma,
exploration_noise=exploration_noise,
estimation_step=estimation_step,
action_scaling=action_scaling,
action_bound_method=action_bound_method,
observation_space=observation_space,
lr_scheduler=lr_scheduler,
)
if critic2 and not critic2_optim:
raise ValueError("critic2_optim must be provided if critic2 is provided")
critic2 = critic2 or deepcopy(critic)
critic2_optim = critic2_optim or clone_optimizer(critic_optim, critic2.parameters())
self.critic2, self.critic2_old = critic2, deepcopy(critic2)
self.critic2_old.eval()
self.critic2_optim = critic2_optim
self.policy_noise = policy_noise
self.update_actor_freq = update_actor_freq
self.noise_clip = noise_clip
self._cnt = 0
self._last = 0
def train(self, mode: bool = True) -> Self:
self.training = mode
self.actor.train(mode)
self.critic.train(mode)
self.critic2.train(mode)
return self
def sync_weight(self) -> None:
self.soft_update(self.critic_old, self.critic, self.tau)
self.soft_update(self.critic2_old, self.critic2, self.tau)
self.soft_update(self.actor_old, self.actor, self.tau)
def _target_q(self, buffer: ReplayBuffer, indices: np.ndarray) -> torch.Tensor:
obs_next_batch = Batch(
obs=buffer[indices].obs_next,
info=[None] * len(indices),
) # obs_next: s_{t+n}
act_ = self(obs_next_batch, model="actor_old").act
noise = torch.randn(size=act_.shape, device=act_.device) * self.policy_noise
if self.noise_clip > 0.0:
noise = noise.clamp(-self.noise_clip, self.noise_clip)
act_ += noise
return torch.min(
self.critic_old(obs_next_batch.obs, act_),
self.critic2_old(obs_next_batch.obs, act_),
)
def learn(self, batch: RolloutBatchProtocol, *args: Any, **kwargs: Any) -> dict[str, float]:
# critic 1&2
td1, critic1_loss = self._mse_optimizer(batch, self.critic, self.critic_optim)
td2, critic2_loss = self._mse_optimizer(batch, self.critic2, self.critic2_optim)
batch.weight = (td1 + td2) / 2.0 # prio-buffer
# actor
if self._cnt % self.update_actor_freq == 0:
actor_loss = -self.critic(batch.obs, self(batch, eps=0.0).act).mean()
self.actor_optim.zero_grad()
actor_loss.backward()
self._last = actor_loss.item()
self.actor_optim.step()
self.sync_weight()
self._cnt += 1
return {
"loss/actor": self._last,
"loss/critic1": critic1_loss.item(),
"loss/critic2": critic2_loss.item(),
}