Tianshou/examples/mujoco/mujoco_ppo_hl.py

75 lines
2.1 KiB
Python

#!/usr/bin/env python3
import datetime
import os
from collections.abc import Sequence
from dataclasses import dataclass
from jsonargparse import CLI
from torch.distributions import Independent, Normal
from examples.mujoco.mujoco_env import MujocoEnvFactory
from tianshou.highlevel.agent import PGConfig, PPOAgentFactory, PPOConfig, RLAgentConfig
from tianshou.highlevel.experiment import (
RLExperiment,
RLExperimentConfig,
)
from tianshou.highlevel.config import RLSamplingConfig
from tianshou.highlevel.logger import DefaultLoggerFactory
from tianshou.highlevel.module import (
ContinuousActorProbFactory,
ContinuousNetCriticFactory,
)
from tianshou.highlevel.optim import AdamOptimizerFactory, LinearLRSchedulerFactory
@dataclass
class NNConfig:
hidden_sizes: Sequence[int] = (64, 64)
lr: float = 3e-4
lr_decay: bool = True
def main(
experiment_config: RLExperimentConfig,
sampling_config: RLSamplingConfig,
general_config: RLAgentConfig,
pg_config: PGConfig,
ppo_config: PPOConfig,
nn_config: NNConfig,
task: str = "Ant-v4",
):
now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
log_name = os.path.join(task, "ppo", str(experiment_config.seed), now)
logger_factory = DefaultLoggerFactory()
env_factory = MujocoEnvFactory(task, experiment_config.seed, sampling_config)
def dist_fn(*logits):
return Independent(Normal(*logits), 1)
actor_factory = ContinuousActorProbFactory(nn_config.hidden_sizes)
critic_factory = ContinuousNetCriticFactory(nn_config.hidden_sizes)
optim_factory = AdamOptimizerFactory()
lr_scheduler_factory = LinearLRSchedulerFactory(sampling_config) if nn_config.lr_decay else None
agent_factory = PPOAgentFactory(
general_config,
pg_config,
ppo_config,
sampling_config,
actor_factory,
critic_factory,
optim_factory,
dist_fn,
nn_config.lr,
lr_scheduler_factory,
)
experiment = RLExperiment(experiment_config, env_factory, logger_factory, agent_factory)
experiment.run(log_name)
if __name__ == "__main__":
CLI(main)