2020-04-28 23:44:15 +08:00

138 lines
5.5 KiB
Python

import torch
import numpy as np
from copy import deepcopy
import torch.nn.functional as F
from tianshou.data import Batch
from tianshou.policy import DDPGPolicy
class SACPolicy(DDPGPolicy):
"""Implementation of Soft Actor-Critic. arXiv:1812.05905
:param torch.nn.Module actor: the actor network following the rules in
:class:`~tianshou.policy.BasePolicy`. (s -> logits)
:param torch.optim.Optimizer actor_optim: the optimizer for actor network.
:param torch.nn.Module critic1: the first critic network. (s, a -> Q(s,
a))
:param torch.optim.Optimizer critic1_optim: the optimizer for the first
critic network.
:param torch.nn.Module critic2: the second critic network. (s, a -> Q(s,
a))
:param torch.optim.Optimizer critic2_optim: the optimizer for the second
critic network.
:param float tau: param for soft update of the target network, defaults to
0.005.
:param float gamma: discount factor, in [0, 1], defaults to 0.99.
:param float exploration_noise: the noise intensity, add to the action,
defaults to 0.1.
:param float alpha: entropy regularization coefficient, default to 0.2.
:param action_range: the action range (minimum, maximum).
:type action_range: [float, float]
:param bool reward_normalization: normalize the reward to Normal(0, 1),
defaults to ``False``.
:param bool ignore_done: ignore the done flag while training the policy,
defaults to ``False``.
.. seealso::
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
explanation.
"""
def __init__(self, actor, actor_optim, critic1, critic1_optim,
critic2, critic2_optim, tau=0.005, gamma=0.99,
alpha=0.2, action_range=None, reward_normalization=False,
ignore_done=False, **kwargs):
super().__init__(None, None, None, None, tau, gamma, 0,
action_range, reward_normalization, ignore_done,
**kwargs)
self.actor, self.actor_optim = actor, actor_optim
self.critic1, self.critic1_old = critic1, deepcopy(critic1)
self.critic1_old.eval()
self.critic1_optim = critic1_optim
self.critic2, self.critic2_old = critic2, deepcopy(critic2)
self.critic2_old.eval()
self.critic2_optim = critic2_optim
self._alpha = alpha
self.__eps = np.finfo(np.float32).eps.item()
def train(self):
self.training = True
self.actor.train()
self.critic1.train()
self.critic2.train()
def eval(self):
self.training = False
self.actor.eval()
self.critic1.eval()
self.critic2.eval()
def sync_weight(self):
for o, n in zip(
self.critic1_old.parameters(), self.critic1.parameters()):
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
for o, n in zip(
self.critic2_old.parameters(), self.critic2.parameters()):
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
def forward(self, batch, state=None, input='obs', **kwargs):
obs = getattr(batch, input)
logits, h = self.actor(obs, state=state, info=batch.info)
assert isinstance(logits, tuple)
dist = torch.distributions.Normal(*logits)
x = dist.rsample()
y = torch.tanh(x)
act = y * self._action_scale + self._action_bias
log_prob = dist.log_prob(x) - torch.log(
self._action_scale * (1 - y.pow(2)) + self.__eps)
log_prob = torch.unsqueeze(torch.sum(log_prob, 1), 1)
act = act.clamp(self._range[0], self._range[1])
return Batch(
logits=logits, act=act, state=h, dist=dist, log_prob=log_prob)
def learn(self, batch, **kwargs):
with torch.no_grad():
obs_next_result = self(batch, input='obs_next')
a_ = obs_next_result.act
dev = a_.device
batch.act = torch.tensor(batch.act, dtype=torch.float, device=dev)
target_q = torch.min(
self.critic1_old(batch.obs_next, a_),
self.critic2_old(batch.obs_next, a_),
) - self._alpha * obs_next_result.log_prob
rew = torch.tensor(batch.rew,
dtype=torch.float, device=dev)[:, None]
done = torch.tensor(batch.done,
dtype=torch.float, device=dev)[:, None]
target_q = (rew + (1. - done) * self._gamma * target_q)
# critic 1
current_q1 = self.critic1(batch.obs, batch.act)
critic1_loss = F.mse_loss(current_q1, target_q)
self.critic1_optim.zero_grad()
critic1_loss.backward()
self.critic1_optim.step()
# critic 2
current_q2 = self.critic2(batch.obs, batch.act)
critic2_loss = F.mse_loss(current_q2, target_q)
self.critic2_optim.zero_grad()
critic2_loss.backward()
self.critic2_optim.step()
# actor
obs_result = self(batch)
a = obs_result.act
current_q1a = self.critic1(batch.obs, a)
current_q2a = self.critic2(batch.obs, a)
actor_loss = (self._alpha * obs_result.log_prob - torch.min(
current_q1a, current_q2a)).mean()
self.actor_optim.zero_grad()
actor_loss.backward()
self.actor_optim.step()
self.sync_weight()
return {
'loss/actor': actor_loss.item(),
'loss/critic1': critic1_loss.item(),
'loss/critic2': critic2_loss.item(),
}