Tianshou/test/discrete/test_il_crr.py

111 lines
3.9 KiB
Python

import os
import gym
import torch
import pickle
import pprint
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector
from tianshou.utils import BasicLogger
from tianshou.env import DummyVectorEnv
from tianshou.utils.net.common import Net
from tianshou.trainer import offline_trainer
from tianshou.policy import DiscreteCRRPolicy
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="CartPole-v0")
parser.add_argument("--seed", type=int, default=1626)
parser.add_argument("--lr", type=float, default=7e-4)
parser.add_argument("--gamma", type=float, default=0.99)
parser.add_argument("--n-step", type=int, default=3)
parser.add_argument("--target-update-freq", type=int, default=320)
parser.add_argument("--epoch", type=int, default=5)
parser.add_argument("--update-per-epoch", type=int, default=1000)
parser.add_argument("--batch-size", type=int, default=64)
parser.add_argument('--hidden-sizes', type=int,
nargs='*', default=[64, 64])
parser.add_argument("--test-num", type=int, default=100)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.)
parser.add_argument(
"--load-buffer-name", type=str,
default="./expert_DQN_CartPole-v0.pkl",
)
parser.add_argument(
"--device", type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
args = parser.parse_known_args()[0]
return args
def test_discrete_crr(args=get_args()):
# envs
env = gym.make(args.task)
if args.task == 'CartPole-v0':
env.spec.reward_threshold = 190 # lower the goal
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
test_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
test_envs.seed(args.seed)
# model
actor = Net(args.state_shape, args.action_shape,
hidden_sizes=args.hidden_sizes, device=args.device,
softmax=False)
critic = Net(args.state_shape, args.action_shape,
hidden_sizes=args.hidden_sizes, device=args.device,
softmax=False)
optim = torch.optim.Adam(list(actor.parameters()) + list(critic.parameters()),
lr=args.lr)
policy = DiscreteCRRPolicy(
actor, critic, optim, args.gamma,
target_update_freq=args.target_update_freq,
).to(args.device)
# buffer
assert os.path.exists(args.load_buffer_name), \
"Please run test_dqn.py first to get expert's data buffer."
buffer = pickle.load(open(args.load_buffer_name, "rb"))
# collector
test_collector = Collector(policy, test_envs, exploration_noise=True)
log_path = os.path.join(args.logdir, args.task, 'discrete_cql')
writer = SummaryWriter(log_path)
logger = BasicLogger(writer)
def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
def stop_fn(mean_rewards):
return mean_rewards >= env.spec.reward_threshold
result = offline_trainer(
policy, buffer, test_collector,
args.epoch, args.update_per_epoch, args.test_num, args.batch_size,
stop_fn=stop_fn, save_fn=save_fn, logger=logger)
assert stop_fn(result['best_reward'])
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
policy.eval()
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
if __name__ == "__main__":
test_discrete_crr(get_args())