170 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			170 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import argparse
 | 
						|
import os
 | 
						|
import pickle
 | 
						|
 | 
						|
import gym
 | 
						|
import numpy as np
 | 
						|
import torch
 | 
						|
from torch.utils.tensorboard import SummaryWriter
 | 
						|
 | 
						|
from tianshou.data import Collector, PrioritizedVectorReplayBuffer, VectorReplayBuffer
 | 
						|
from tianshou.env import DummyVectorEnv
 | 
						|
from tianshou.policy import QRDQNPolicy
 | 
						|
from tianshou.trainer import offpolicy_trainer
 | 
						|
from tianshou.utils import TensorboardLogger
 | 
						|
from tianshou.utils.net.common import Net
 | 
						|
 | 
						|
 | 
						|
def expert_file_name():
 | 
						|
    return os.path.join(os.path.dirname(__file__), "expert_QRDQN_CartPole-v0.pkl")
 | 
						|
 | 
						|
 | 
						|
def get_args():
 | 
						|
    parser = argparse.ArgumentParser()
 | 
						|
    parser.add_argument('--task', type=str, default='CartPole-v0')
 | 
						|
    parser.add_argument('--reward-threshold', type=float, default=None)
 | 
						|
    parser.add_argument('--seed', type=int, default=1)
 | 
						|
    parser.add_argument('--eps-test', type=float, default=0.05)
 | 
						|
    parser.add_argument('--eps-train', type=float, default=0.1)
 | 
						|
    parser.add_argument('--buffer-size', type=int, default=20000)
 | 
						|
    parser.add_argument('--lr', type=float, default=1e-3)
 | 
						|
    parser.add_argument('--gamma', type=float, default=0.9)
 | 
						|
    parser.add_argument('--num-quantiles', type=int, default=200)
 | 
						|
    parser.add_argument('--n-step', type=int, default=3)
 | 
						|
    parser.add_argument('--target-update-freq', type=int, default=320)
 | 
						|
    parser.add_argument('--epoch', type=int, default=10)
 | 
						|
    parser.add_argument('--step-per-epoch', type=int, default=10000)
 | 
						|
    parser.add_argument('--step-per-collect', type=int, default=10)
 | 
						|
    parser.add_argument('--update-per-step', type=float, default=0.1)
 | 
						|
    parser.add_argument('--batch-size', type=int, default=64)
 | 
						|
    parser.add_argument(
 | 
						|
        '--hidden-sizes', type=int, nargs='*', default=[128, 128, 128, 128]
 | 
						|
    )
 | 
						|
    parser.add_argument('--training-num', type=int, default=10)
 | 
						|
    parser.add_argument('--test-num', type=int, default=100)
 | 
						|
    parser.add_argument('--logdir', type=str, default='log')
 | 
						|
    parser.add_argument('--render', type=float, default=0.)
 | 
						|
    parser.add_argument('--prioritized-replay', action="store_true", default=False)
 | 
						|
    parser.add_argument('--alpha', type=float, default=0.6)
 | 
						|
    parser.add_argument('--beta', type=float, default=0.4)
 | 
						|
    parser.add_argument('--save-buffer-name', type=str, default=expert_file_name())
 | 
						|
    parser.add_argument(
 | 
						|
        '--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
 | 
						|
    )
 | 
						|
    args = parser.parse_known_args()[0]
 | 
						|
    return args
 | 
						|
 | 
						|
 | 
						|
def gather_data():
 | 
						|
    args = get_args()
 | 
						|
    env = gym.make(args.task)
 | 
						|
    args.state_shape = env.observation_space.shape or env.observation_space.n
 | 
						|
    args.action_shape = env.action_space.shape or env.action_space.n
 | 
						|
    if args.reward_threshold is None:
 | 
						|
        default_reward_threshold = {"CartPole-v0": 190}
 | 
						|
        args.reward_threshold = default_reward_threshold.get(
 | 
						|
            args.task, env.spec.reward_threshold
 | 
						|
        )
 | 
						|
    # train_envs = gym.make(args.task)
 | 
						|
    # you can also use tianshou.env.SubprocVectorEnv
 | 
						|
    train_envs = DummyVectorEnv(
 | 
						|
        [lambda: gym.make(args.task) for _ in range(args.training_num)]
 | 
						|
    )
 | 
						|
    # test_envs = gym.make(args.task)
 | 
						|
    test_envs = DummyVectorEnv(
 | 
						|
        [lambda: gym.make(args.task) for _ in range(args.test_num)]
 | 
						|
    )
 | 
						|
    # seed
 | 
						|
    np.random.seed(args.seed)
 | 
						|
    torch.manual_seed(args.seed)
 | 
						|
    train_envs.seed(args.seed)
 | 
						|
    test_envs.seed(args.seed)
 | 
						|
    # model
 | 
						|
    net = Net(
 | 
						|
        args.state_shape,
 | 
						|
        args.action_shape,
 | 
						|
        hidden_sizes=args.hidden_sizes,
 | 
						|
        device=args.device,
 | 
						|
        softmax=False,
 | 
						|
        num_atoms=args.num_quantiles,
 | 
						|
    )
 | 
						|
    optim = torch.optim.Adam(net.parameters(), lr=args.lr)
 | 
						|
    policy = QRDQNPolicy(
 | 
						|
        net,
 | 
						|
        optim,
 | 
						|
        args.gamma,
 | 
						|
        args.num_quantiles,
 | 
						|
        args.n_step,
 | 
						|
        target_update_freq=args.target_update_freq,
 | 
						|
    ).to(args.device)
 | 
						|
    # buffer
 | 
						|
    if args.prioritized_replay:
 | 
						|
        buf = PrioritizedVectorReplayBuffer(
 | 
						|
            args.buffer_size,
 | 
						|
            buffer_num=len(train_envs),
 | 
						|
            alpha=args.alpha,
 | 
						|
            beta=args.beta,
 | 
						|
        )
 | 
						|
    else:
 | 
						|
        buf = VectorReplayBuffer(args.buffer_size, buffer_num=len(train_envs))
 | 
						|
    # collector
 | 
						|
    train_collector = Collector(policy, train_envs, buf, exploration_noise=True)
 | 
						|
    test_collector = Collector(policy, test_envs, exploration_noise=True)
 | 
						|
    # policy.set_eps(1)
 | 
						|
    train_collector.collect(n_step=args.batch_size * args.training_num)
 | 
						|
    # log
 | 
						|
    log_path = os.path.join(args.logdir, args.task, 'qrdqn')
 | 
						|
    writer = SummaryWriter(log_path)
 | 
						|
    logger = TensorboardLogger(writer)
 | 
						|
 | 
						|
    def save_best_fn(policy):
 | 
						|
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
 | 
						|
 | 
						|
    def stop_fn(mean_rewards):
 | 
						|
        return mean_rewards >= args.reward_threshold
 | 
						|
 | 
						|
    def train_fn(epoch, env_step):
 | 
						|
        # eps annnealing, just a demo
 | 
						|
        if env_step <= 10000:
 | 
						|
            policy.set_eps(args.eps_train)
 | 
						|
        elif env_step <= 50000:
 | 
						|
            eps = args.eps_train - (env_step - 10000) / \
 | 
						|
                40000 * (0.9 * args.eps_train)
 | 
						|
            policy.set_eps(eps)
 | 
						|
        else:
 | 
						|
            policy.set_eps(0.1 * args.eps_train)
 | 
						|
 | 
						|
    def test_fn(epoch, env_step):
 | 
						|
        policy.set_eps(args.eps_test)
 | 
						|
 | 
						|
    # trainer
 | 
						|
    result = offpolicy_trainer(
 | 
						|
        policy,
 | 
						|
        train_collector,
 | 
						|
        test_collector,
 | 
						|
        args.epoch,
 | 
						|
        args.step_per_epoch,
 | 
						|
        args.step_per_collect,
 | 
						|
        args.test_num,
 | 
						|
        args.batch_size,
 | 
						|
        train_fn=train_fn,
 | 
						|
        test_fn=test_fn,
 | 
						|
        stop_fn=stop_fn,
 | 
						|
        save_best_fn=save_best_fn,
 | 
						|
        logger=logger,
 | 
						|
        update_per_step=args.update_per_step,
 | 
						|
    )
 | 
						|
    assert stop_fn(result['best_reward'])
 | 
						|
 | 
						|
    # save buffer in pickle format, for imitation learning unittest
 | 
						|
    buf = VectorReplayBuffer(args.buffer_size, buffer_num=len(test_envs))
 | 
						|
    policy.set_eps(0.2)
 | 
						|
    collector = Collector(policy, test_envs, buf, exploration_noise=True)
 | 
						|
    result = collector.collect(n_step=args.buffer_size)
 | 
						|
    if args.save_buffer_name.endswith(".hdf5"):
 | 
						|
        buf.save_hdf5(args.save_buffer_name)
 | 
						|
    else:
 | 
						|
        pickle.dump(buf, open(args.save_buffer_name, "wb"))
 | 
						|
    print(result["rews"].mean())
 | 
						|
    return buf
 |