* update multi-agent docs, upgrade pettingzoo * avoid pettingzoo deprecation warning * fix pistonball tests * codestyle
		
			
				
	
	
		
			242 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			242 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import argparse
 | 
						|
import os
 | 
						|
from copy import deepcopy
 | 
						|
from typing import Optional, Tuple
 | 
						|
 | 
						|
import gym
 | 
						|
import numpy as np
 | 
						|
import torch
 | 
						|
from pettingzoo.classic import tictactoe_v3
 | 
						|
from torch.utils.tensorboard import SummaryWriter
 | 
						|
 | 
						|
from tianshou.data import Collector, VectorReplayBuffer
 | 
						|
from tianshou.env import DummyVectorEnv
 | 
						|
from tianshou.env.pettingzoo_env import PettingZooEnv
 | 
						|
from tianshou.policy import (
 | 
						|
    BasePolicy,
 | 
						|
    DQNPolicy,
 | 
						|
    MultiAgentPolicyManager,
 | 
						|
    RandomPolicy,
 | 
						|
)
 | 
						|
from tianshou.trainer import offpolicy_trainer
 | 
						|
from tianshou.utils import TensorboardLogger
 | 
						|
from tianshou.utils.net.common import Net
 | 
						|
 | 
						|
 | 
						|
def get_env():
 | 
						|
    return PettingZooEnv(tictactoe_v3.env())
 | 
						|
 | 
						|
 | 
						|
def get_parser() -> argparse.ArgumentParser:
 | 
						|
    parser = argparse.ArgumentParser()
 | 
						|
    parser.add_argument('--seed', type=int, default=1626)
 | 
						|
    parser.add_argument('--eps-test', type=float, default=0.05)
 | 
						|
    parser.add_argument('--eps-train', type=float, default=0.1)
 | 
						|
    parser.add_argument('--buffer-size', type=int, default=20000)
 | 
						|
    parser.add_argument('--lr', type=float, default=1e-4)
 | 
						|
    parser.add_argument(
 | 
						|
        '--gamma', type=float, default=0.9, help='a smaller gamma favors earlier win'
 | 
						|
    )
 | 
						|
    parser.add_argument('--n-step', type=int, default=3)
 | 
						|
    parser.add_argument('--target-update-freq', type=int, default=320)
 | 
						|
    parser.add_argument('--epoch', type=int, default=50)
 | 
						|
    parser.add_argument('--step-per-epoch', type=int, default=1000)
 | 
						|
    parser.add_argument('--step-per-collect', type=int, default=10)
 | 
						|
    parser.add_argument('--update-per-step', type=float, default=0.1)
 | 
						|
    parser.add_argument('--batch-size', type=int, default=64)
 | 
						|
    parser.add_argument(
 | 
						|
        '--hidden-sizes', type=int, nargs='*', default=[128, 128, 128, 128]
 | 
						|
    )
 | 
						|
    parser.add_argument('--training-num', type=int, default=10)
 | 
						|
    parser.add_argument('--test-num', type=int, default=10)
 | 
						|
    parser.add_argument('--logdir', type=str, default='log')
 | 
						|
    parser.add_argument('--render', type=float, default=0.1)
 | 
						|
    parser.add_argument(
 | 
						|
        '--win-rate',
 | 
						|
        type=float,
 | 
						|
        default=0.6,
 | 
						|
        help='the expected winning rate: Optimal policy can get 0.7'
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        '--watch',
 | 
						|
        default=False,
 | 
						|
        action='store_true',
 | 
						|
        help='no training, '
 | 
						|
        'watch the play of pre-trained models'
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        '--agent-id',
 | 
						|
        type=int,
 | 
						|
        default=2,
 | 
						|
        help='the learned agent plays as the'
 | 
						|
        ' agent_id-th player. Choices are 1 and 2.'
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        '--resume-path',
 | 
						|
        type=str,
 | 
						|
        default='',
 | 
						|
        help='the path of agent pth file '
 | 
						|
        'for resuming from a pre-trained agent'
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        '--opponent-path',
 | 
						|
        type=str,
 | 
						|
        default='',
 | 
						|
        help='the path of opponent agent pth file '
 | 
						|
        'for resuming from a pre-trained agent'
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        '--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
 | 
						|
    )
 | 
						|
    return parser
 | 
						|
 | 
						|
 | 
						|
def get_args() -> argparse.Namespace:
 | 
						|
    parser = get_parser()
 | 
						|
    return parser.parse_known_args()[0]
 | 
						|
 | 
						|
 | 
						|
def get_agents(
 | 
						|
    args: argparse.Namespace = get_args(),
 | 
						|
    agent_learn: Optional[BasePolicy] = None,
 | 
						|
    agent_opponent: Optional[BasePolicy] = None,
 | 
						|
    optim: Optional[torch.optim.Optimizer] = None,
 | 
						|
) -> Tuple[BasePolicy, torch.optim.Optimizer, list]:
 | 
						|
    env = get_env()
 | 
						|
    observation_space = env.observation_space['observation'] if isinstance(
 | 
						|
        env.observation_space, gym.spaces.Dict
 | 
						|
    ) else env.observation_space
 | 
						|
    args.state_shape = observation_space.shape or observation_space.n
 | 
						|
    args.action_shape = env.action_space.shape or env.action_space.n
 | 
						|
    if agent_learn is None:
 | 
						|
        # model
 | 
						|
        net = Net(
 | 
						|
            args.state_shape,
 | 
						|
            args.action_shape,
 | 
						|
            hidden_sizes=args.hidden_sizes,
 | 
						|
            device=args.device
 | 
						|
        ).to(args.device)
 | 
						|
        if optim is None:
 | 
						|
            optim = torch.optim.Adam(net.parameters(), lr=args.lr)
 | 
						|
        agent_learn = DQNPolicy(
 | 
						|
            net,
 | 
						|
            optim,
 | 
						|
            args.gamma,
 | 
						|
            args.n_step,
 | 
						|
            target_update_freq=args.target_update_freq
 | 
						|
        )
 | 
						|
        if args.resume_path:
 | 
						|
            agent_learn.load_state_dict(torch.load(args.resume_path))
 | 
						|
 | 
						|
    if agent_opponent is None:
 | 
						|
        if args.opponent_path:
 | 
						|
            agent_opponent = deepcopy(agent_learn)
 | 
						|
            agent_opponent.load_state_dict(torch.load(args.opponent_path))
 | 
						|
        else:
 | 
						|
            agent_opponent = RandomPolicy()
 | 
						|
 | 
						|
    if args.agent_id == 1:
 | 
						|
        agents = [agent_learn, agent_opponent]
 | 
						|
    else:
 | 
						|
        agents = [agent_opponent, agent_learn]
 | 
						|
    policy = MultiAgentPolicyManager(agents, env)
 | 
						|
    return policy, optim, env.agents
 | 
						|
 | 
						|
 | 
						|
def train_agent(
 | 
						|
    args: argparse.Namespace = get_args(),
 | 
						|
    agent_learn: Optional[BasePolicy] = None,
 | 
						|
    agent_opponent: Optional[BasePolicy] = None,
 | 
						|
    optim: Optional[torch.optim.Optimizer] = None,
 | 
						|
) -> Tuple[dict, BasePolicy]:
 | 
						|
 | 
						|
    train_envs = DummyVectorEnv([get_env for _ in range(args.training_num)])
 | 
						|
    test_envs = DummyVectorEnv([get_env for _ in range(args.test_num)])
 | 
						|
    # seed
 | 
						|
    np.random.seed(args.seed)
 | 
						|
    torch.manual_seed(args.seed)
 | 
						|
    train_envs.seed(args.seed)
 | 
						|
    test_envs.seed(args.seed)
 | 
						|
 | 
						|
    policy, optim, agents = get_agents(
 | 
						|
        args, agent_learn=agent_learn, agent_opponent=agent_opponent, optim=optim
 | 
						|
    )
 | 
						|
 | 
						|
    # collector
 | 
						|
    train_collector = Collector(
 | 
						|
        policy,
 | 
						|
        train_envs,
 | 
						|
        VectorReplayBuffer(args.buffer_size, len(train_envs)),
 | 
						|
        exploration_noise=True
 | 
						|
    )
 | 
						|
    test_collector = Collector(policy, test_envs, exploration_noise=True)
 | 
						|
    # policy.set_eps(1)
 | 
						|
    train_collector.collect(n_step=args.batch_size * args.training_num)
 | 
						|
    # log
 | 
						|
    log_path = os.path.join(args.logdir, 'tic_tac_toe', 'dqn')
 | 
						|
    writer = SummaryWriter(log_path)
 | 
						|
    writer.add_text("args", str(args))
 | 
						|
    logger = TensorboardLogger(writer)
 | 
						|
 | 
						|
    def save_best_fn(policy):
 | 
						|
        if hasattr(args, 'model_save_path'):
 | 
						|
            model_save_path = args.model_save_path
 | 
						|
        else:
 | 
						|
            model_save_path = os.path.join(
 | 
						|
                args.logdir, 'tic_tac_toe', 'dqn', 'policy.pth'
 | 
						|
            )
 | 
						|
        torch.save(
 | 
						|
            policy.policies[agents[args.agent_id - 1]].state_dict(), model_save_path
 | 
						|
        )
 | 
						|
 | 
						|
    def stop_fn(mean_rewards):
 | 
						|
        return mean_rewards >= args.win_rate
 | 
						|
 | 
						|
    def train_fn(epoch, env_step):
 | 
						|
        policy.policies[agents[args.agent_id - 1]].set_eps(args.eps_train)
 | 
						|
 | 
						|
    def test_fn(epoch, env_step):
 | 
						|
        policy.policies[agents[args.agent_id - 1]].set_eps(args.eps_test)
 | 
						|
 | 
						|
    def reward_metric(rews):
 | 
						|
        return rews[:, args.agent_id - 1]
 | 
						|
 | 
						|
    # trainer
 | 
						|
    result = offpolicy_trainer(
 | 
						|
        policy,
 | 
						|
        train_collector,
 | 
						|
        test_collector,
 | 
						|
        args.epoch,
 | 
						|
        args.step_per_epoch,
 | 
						|
        args.step_per_collect,
 | 
						|
        args.test_num,
 | 
						|
        args.batch_size,
 | 
						|
        train_fn=train_fn,
 | 
						|
        test_fn=test_fn,
 | 
						|
        stop_fn=stop_fn,
 | 
						|
        save_best_fn=save_best_fn,
 | 
						|
        update_per_step=args.update_per_step,
 | 
						|
        logger=logger,
 | 
						|
        test_in_train=False,
 | 
						|
        reward_metric=reward_metric
 | 
						|
    )
 | 
						|
 | 
						|
    return result, policy.policies[agents[args.agent_id - 1]]
 | 
						|
 | 
						|
 | 
						|
def watch(
 | 
						|
    args: argparse.Namespace = get_args(),
 | 
						|
    agent_learn: Optional[BasePolicy] = None,
 | 
						|
    agent_opponent: Optional[BasePolicy] = None,
 | 
						|
) -> None:
 | 
						|
    env = DummyVectorEnv([get_env])
 | 
						|
    policy, optim, agents = get_agents(
 | 
						|
        args, agent_learn=agent_learn, agent_opponent=agent_opponent
 | 
						|
    )
 | 
						|
    policy.eval()
 | 
						|
    policy.policies[agents[args.agent_id - 1]].set_eps(args.eps_test)
 | 
						|
    collector = Collector(policy, env, exploration_noise=True)
 | 
						|
    result = collector.collect(n_episode=1, render=args.render)
 | 
						|
    rews, lens = result["rews"], result["lens"]
 | 
						|
    print(f"Final reward: {rews[:, args.agent_id - 1].mean()}, length: {lens.mean()}")
 |