2018-01-25 10:11:36 +08:00

22 lines
888 B
Python

import tensorflow as tf
def DPG(policy, action_value):
"""
construct the gradient tensor of deterministic policy gradient
:param policy:
:param action_value:
:return: list of (gradient, variable) pairs
"""
trainable_variables = policy.trainable_variables
critic_action_input = action_value._action_placeholder
critic_value_loss = -tf.reduce_mean(action_value.value_tensor)
policy_action_output = policy.action
grad_ys = tf.gradients(critic_value_loss, critic_action_input)
grad_policy_vars = tf.gradients(policy_action_output, trainable_variables, grad_ys=grad_ys)
# TODO: this is slightly different from ddpg implementations in baselines, keras-rl and rllab. it uses sampled action (with noise) rather than directly connect the two networks
grads_and_vars = zip(grad_policy_vars, trainable_variables)
return grads_and_vars