Tianshou/setup.py
n+e 94bfb32cc1
optimize training procedure and improve code coverage (#189)
1. add policy.eval() in all test scripts' "watch performance"
2. remove dict return support for collector preprocess_fn
3. add `__contains__` and `pop` in batch: `key in batch`, `batch.pop(key, deft)`
4. exact n_episode for a list of n_episode limitation and save fake data in cache_buffer when self.buffer is None (#184)
5. fix tensorboard logging: h-axis stands for env step instead of gradient step; add test results into tensorboard
6. add test_returns (both GAE and nstep)
7. change the type-checking order in batch.py and converter.py in order to meet the most often case first
8. fix shape inconsistency for torch.Tensor in replay buffer
9. remove `**kwargs` in ReplayBuffer
10. remove default value in batch.split() and add merge_last argument (#185)
11. improve nstep efficiency
12. add max_batchsize in onpolicy algorithms
13. potential bugfix for subproc.wait
14. fix RecurrentActorProb
15. improve the code-coverage (from 90% to 95%) and remove the dead code
16. fix some incorrect type annotation

The above improvement also increases the training FPS: on my computer, the previous version is only ~1800 FPS and after that, it can reach ~2050 (faster than v0.2.4.post1).
2020-08-27 12:15:18 +08:00

69 lines
2.1 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from setuptools import setup, find_packages
setup(
name='tianshou',
version='0.2.6',
description='A Library for Deep Reinforcement Learning',
long_description=open('README.md', encoding='utf8').read(),
long_description_content_type='text/markdown',
url='https://github.com/thu-ml/tianshou',
author='TSAIL',
author_email='trinkle23897@gmail.com',
license='MIT',
python_requires='>=3.6',
classifiers=[
# How mature is this project? Common values are
# 3 - Alpha
# 4 - Beta
# 5 - Production/Stable
'Development Status :: 3 - Alpha',
# Indicate who your project is intended for
'Intended Audience :: Science/Research',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'Topic :: Software Development :: Libraries :: Python Modules',
# Pick your license as you wish (should match "license" above)
'License :: OSI Approved :: MIT License',
# Specify the Python versions you support here. In particular, ensure
# that you indicate whether you support Python 2, Python 3 or both.
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
],
keywords='reinforcement learning platform pytorch',
packages=find_packages(exclude=['test', 'test.*',
'examples', 'examples.*',
'docs', 'docs.*']),
install_requires=[
'gym>=0.15.4',
'tqdm',
'numpy',
'tensorboard',
'torch>=1.4.0',
],
extras_require={
'dev': [
'Sphinx',
'sphinx_rtd_theme',
'sphinxcontrib-bibtex',
'flake8',
'pytest',
'pytest-cov',
'ray>=0.8.0',
],
'atari': [
'atari_py',
'cv2',
],
'mujoco': [
'mujoco_py',
],
'pybullet': [
'pybullet',
],
},
)