1. add policy.eval() in all test scripts' "watch performance" 2. remove dict return support for collector preprocess_fn 3. add `__contains__` and `pop` in batch: `key in batch`, `batch.pop(key, deft)` 4. exact n_episode for a list of n_episode limitation and save fake data in cache_buffer when self.buffer is None (#184) 5. fix tensorboard logging: h-axis stands for env step instead of gradient step; add test results into tensorboard 6. add test_returns (both GAE and nstep) 7. change the type-checking order in batch.py and converter.py in order to meet the most often case first 8. fix shape inconsistency for torch.Tensor in replay buffer 9. remove `**kwargs` in ReplayBuffer 10. remove default value in batch.split() and add merge_last argument (#185) 11. improve nstep efficiency 12. add max_batchsize in onpolicy algorithms 13. potential bugfix for subproc.wait 14. fix RecurrentActorProb 15. improve the code-coverage (from 90% to 95%) and remove the dead code 16. fix some incorrect type annotation The above improvement also increases the training FPS: on my computer, the previous version is only ~1800 FPS and after that, it can reach ~2050 (faster than v0.2.4.post1).
		
			
				
	
	
		
			132 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			132 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import torch
 | |
| import numpy as np
 | |
| from torch import nn
 | |
| from typing import List, Tuple, Union, Optional
 | |
| 
 | |
| from tianshou.data import to_torch
 | |
| 
 | |
| 
 | |
| def miniblock(inp: int, oup: int,
 | |
|               norm_layer: nn.modules.Module) -> List[nn.modules.Module]:
 | |
|     ret = [nn.Linear(inp, oup)]
 | |
|     if norm_layer is not None:
 | |
|         ret += [norm_layer(oup)]
 | |
|     ret += [nn.ReLU(inplace=True)]
 | |
|     return ret
 | |
| 
 | |
| 
 | |
| class Net(nn.Module):
 | |
|     """Simple MLP backbone. For advanced usage (how to customize the network),
 | |
|     please refer to :ref:`build_the_network`.
 | |
| 
 | |
|     :param bool concat: whether the input shape is concatenated by state_shape
 | |
|         and action_shape. If it is True, ``action_shape`` is not the output
 | |
|         shape, but affects the input shape.
 | |
|     :param bool dueling: whether to use dueling network to calculate Q values
 | |
|         (for Dueling DQN), defaults to False.
 | |
|     :param nn.modules.Module norm_layer: use which normalization before ReLU,
 | |
|         e.g., ``nn.LayerNorm`` and ``nn.BatchNorm1d``, defaults to None.
 | |
|     """
 | |
| 
 | |
|     def __init__(self, layer_num: int, state_shape: tuple,
 | |
|                  action_shape: Optional[Union[tuple, int]] = 0,
 | |
|                  device: Union[str, torch.device] = 'cpu',
 | |
|                  softmax: bool = False,
 | |
|                  concat: bool = False,
 | |
|                  hidden_layer_size: int = 128,
 | |
|                  dueling: Optional[Tuple[int, int]] = None,
 | |
|                  norm_layer: Optional[nn.modules.Module] = None):
 | |
|         super().__init__()
 | |
|         self.device = device
 | |
|         self.dueling = dueling
 | |
|         self.softmax = softmax
 | |
|         input_size = np.prod(state_shape)
 | |
|         if concat:
 | |
|             input_size += np.prod(action_shape)
 | |
| 
 | |
|         self.model = miniblock(input_size, hidden_layer_size, norm_layer)
 | |
| 
 | |
|         for i in range(layer_num):
 | |
|             self.model += miniblock(hidden_layer_size,
 | |
|                                     hidden_layer_size, norm_layer)
 | |
| 
 | |
|         if self.dueling is None:
 | |
|             if action_shape and not concat:
 | |
|                 self.model += [nn.Linear(hidden_layer_size,
 | |
|                                          np.prod(action_shape))]
 | |
|         else:  # dueling DQN
 | |
|             assert isinstance(self.dueling, tuple) and len(self.dueling) == 2
 | |
| 
 | |
|             q_layer_num, v_layer_num = self.dueling
 | |
|             self.Q, self.V = [], []
 | |
| 
 | |
|             for i in range(q_layer_num):
 | |
|                 self.Q += miniblock(hidden_layer_size,
 | |
|                                     hidden_layer_size, norm_layer)
 | |
|             for i in range(v_layer_num):
 | |
|                 self.V += miniblock(hidden_layer_size,
 | |
|                                     hidden_layer_size, norm_layer)
 | |
| 
 | |
|             if action_shape and not concat:
 | |
|                 self.Q += [nn.Linear(hidden_layer_size, np.prod(action_shape))]
 | |
|                 self.V += [nn.Linear(hidden_layer_size, 1)]
 | |
| 
 | |
|             self.Q = nn.Sequential(*self.Q)
 | |
|             self.V = nn.Sequential(*self.V)
 | |
|         self.model = nn.Sequential(*self.model)
 | |
| 
 | |
|     def forward(self, s, state=None, info={}):
 | |
|         """s -> flatten -> logits"""
 | |
|         s = to_torch(s, device=self.device, dtype=torch.float32)
 | |
|         s = s.reshape(s.size(0), -1)
 | |
|         logits = self.model(s)
 | |
|         if self.dueling is not None:  # Dueling DQN
 | |
|             q, v = self.Q(logits), self.V(logits)
 | |
|             logits = q - q.mean(dim=1, keepdim=True) + v
 | |
|         if self.softmax:
 | |
|             logits = torch.softmax(logits, dim=-1)
 | |
|         return logits, state
 | |
| 
 | |
| 
 | |
| class Recurrent(nn.Module):
 | |
|     """Simple Recurrent network based on LSTM. For advanced usage (how to
 | |
|     customize the network), please refer to :ref:`build_the_network`.
 | |
|     """
 | |
| 
 | |
|     def __init__(self, layer_num, state_shape, action_shape,
 | |
|                  device='cpu', hidden_layer_size=128):
 | |
|         super().__init__()
 | |
|         self.state_shape = state_shape
 | |
|         self.action_shape = action_shape
 | |
|         self.device = device
 | |
|         self.nn = nn.LSTM(input_size=hidden_layer_size,
 | |
|                           hidden_size=hidden_layer_size,
 | |
|                           num_layers=layer_num, batch_first=True)
 | |
|         self.fc1 = nn.Linear(np.prod(state_shape), hidden_layer_size)
 | |
|         self.fc2 = nn.Linear(hidden_layer_size, np.prod(action_shape))
 | |
| 
 | |
|     def forward(self, s, state=None, info={}):
 | |
|         """In the evaluation mode, s should be with shape ``[bsz, dim]``; in
 | |
|         the training mode, s should be with shape ``[bsz, len, dim]``. See the
 | |
|         code and comment for more detail.
 | |
|         """
 | |
|         s = to_torch(s, device=self.device, dtype=torch.float32)
 | |
|         # s [bsz, len, dim] (training) or [bsz, dim] (evaluation)
 | |
|         # In short, the tensor's shape in training phase is longer than which
 | |
|         # in evaluation phase.
 | |
|         if len(s.shape) == 2:
 | |
|             s = s.unsqueeze(-2)
 | |
|         s = self.fc1(s)
 | |
|         self.nn.flatten_parameters()
 | |
|         if state is None:
 | |
|             s, (h, c) = self.nn(s)
 | |
|         else:
 | |
|             # we store the stack data in [bsz, len, ...] format
 | |
|             # but pytorch rnn needs [len, bsz, ...]
 | |
|             s, (h, c) = self.nn(s, (state['h'].transpose(0, 1).contiguous(),
 | |
|                                     state['c'].transpose(0, 1).contiguous()))
 | |
|         s = self.fc2(s[:, -1])
 | |
|         # please ensure the first dim is batch size: [bsz, len, ...]
 | |
|         return s, {'h': h.transpose(0, 1).detach(),
 | |
|                    'c': c.transpose(0, 1).detach()}
 |