Tianshou/tianshou/utils/net/discrete.py
n+e 94bfb32cc1
optimize training procedure and improve code coverage (#189)
1. add policy.eval() in all test scripts' "watch performance"
2. remove dict return support for collector preprocess_fn
3. add `__contains__` and `pop` in batch: `key in batch`, `batch.pop(key, deft)`
4. exact n_episode for a list of n_episode limitation and save fake data in cache_buffer when self.buffer is None (#184)
5. fix tensorboard logging: h-axis stands for env step instead of gradient step; add test results into tensorboard
6. add test_returns (both GAE and nstep)
7. change the type-checking order in batch.py and converter.py in order to meet the most often case first
8. fix shape inconsistency for torch.Tensor in replay buffer
9. remove `**kwargs` in ReplayBuffer
10. remove default value in batch.split() and add merge_last argument (#185)
11. improve nstep efficiency
12. add max_batchsize in onpolicy algorithms
13. potential bugfix for subproc.wait
14. fix RecurrentActorProb
15. improve the code-coverage (from 90% to 95%) and remove the dead code
16. fix some incorrect type annotation

The above improvement also increases the training FPS: on my computer, the previous version is only ~1800 FPS and after that, it can reach ~2050 (faster than v0.2.4.post1).
2020-08-27 12:15:18 +08:00

85 lines
2.8 KiB
Python

import torch
import numpy as np
from torch import nn
import torch.nn.functional as F
class Actor(nn.Module):
"""For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(self, preprocess_net, action_shape, hidden_layer_size=128):
super().__init__()
self.preprocess = preprocess_net
self.last = nn.Linear(hidden_layer_size, np.prod(action_shape))
def forward(self, s, state=None, info={}):
r"""s -> Q(s, \*)"""
logits, h = self.preprocess(s, state)
logits = F.softmax(self.last(logits), dim=-1)
return logits, h
class Critic(nn.Module):
"""For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(self, preprocess_net, hidden_layer_size=128):
super().__init__()
self.preprocess = preprocess_net
self.last = nn.Linear(hidden_layer_size, 1)
def forward(self, s, **kwargs):
"""s -> V(s)"""
logits, h = self.preprocess(s, state=kwargs.get('state', None))
logits = self.last(logits)
return logits
class DQN(nn.Module):
"""For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
Reference paper: "Human-level control through deep reinforcement learning".
"""
def __init__(self, c, h, w, action_shape, device='cpu'):
super(DQN, self).__init__()
self.device = device
def conv2d_size_out(size, kernel_size=5, stride=2):
return (size - (kernel_size - 1) - 1) // stride + 1
def conv2d_layers_size_out(size,
kernel_size_1=8, stride_1=4,
kernel_size_2=4, stride_2=2,
kernel_size_3=3, stride_3=1):
size = conv2d_size_out(size, kernel_size_1, stride_1)
size = conv2d_size_out(size, kernel_size_2, stride_2)
size = conv2d_size_out(size, kernel_size_3, stride_3)
return size
convw = conv2d_layers_size_out(w)
convh = conv2d_layers_size_out(h)
linear_input_size = convw * convh * 64
self.net = nn.Sequential(
nn.Conv2d(c, 32, kernel_size=8, stride=4),
nn.ReLU(inplace=True),
nn.Conv2d(32, 64, kernel_size=4, stride=2),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, stride=1),
nn.ReLU(inplace=True),
nn.Flatten(),
nn.Linear(linear_input_size, 512),
nn.Linear(512, np.prod(action_shape))
)
def forward(self, x, state=None, info={}):
r"""x -> Q(x, \*)"""
if not isinstance(x, torch.Tensor):
x = torch.tensor(x, device=self.device, dtype=torch.float32)
return self.net(x), state