Tianshou/tianshou/utils/statistics.py
2022-07-14 22:52:56 -07:00

115 lines
3.7 KiB
Python

from numbers import Number
from typing import List, Optional, Union
import numpy as np
import torch
class MovAvg(object):
"""Class for moving average.
It will automatically exclude the infinity and NaN. Usage:
::
>>> stat = MovAvg(size=66)
>>> stat.add(torch.tensor(5))
5.0
>>> stat.add(float('inf')) # which will not add to stat
5.0
>>> stat.add([6, 7, 8])
6.5
>>> stat.get()
6.5
>>> print(f'{stat.mean():.2f}±{stat.std():.2f}')
6.50±1.12
"""
def __init__(self, size: int = 100) -> None:
super().__init__()
self.size = size
self.cache: List[np.number] = []
self.banned = [np.inf, np.nan, -np.inf]
def add(
self, data_array: Union[Number, np.number, list, np.ndarray, torch.Tensor]
) -> float:
"""Add a scalar into :class:`MovAvg`.
You can add ``torch.Tensor`` with only one element, a python scalar, or
a list of python scalar.
"""
if isinstance(data_array, torch.Tensor):
data_array = data_array.flatten().cpu().numpy()
if np.isscalar(data_array):
data_array = [data_array]
for number in data_array: # type: ignore
if number not in self.banned:
self.cache.append(number)
if self.size > 0 and len(self.cache) > self.size:
self.cache = self.cache[-self.size:]
return self.get()
def get(self) -> float:
"""Get the average."""
if len(self.cache) == 0:
return 0.0
return float(np.mean(self.cache))
def mean(self) -> float:
"""Get the average. Same as :meth:`get`."""
return self.get()
def std(self) -> float:
"""Get the standard deviation."""
if len(self.cache) == 0:
return 0.0
return float(np.std(self.cache))
class RunningMeanStd(object):
"""Calculates the running mean and std of a data stream.
https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm
:param mean: the initial mean estimation for data array. Default to 0.
:param std: the initial standard error estimation for data array. Default to 1.
:param float clip_max: the maximum absolute value for data array. Default to
10.0.
:param float epsilon: To avoid division by zero.
"""
def __init__(
self,
mean: Union[float, np.ndarray] = 0.0,
std: Union[float, np.ndarray] = 1.0,
clip_max: Optional[float] = 10.0,
epsilon: float = np.finfo(np.float32).eps.item(),
) -> None:
self.mean, self.var = mean, std
self.clip_max = clip_max
self.count = 0
self.eps = epsilon
def norm(self, data_array: Union[float, np.ndarray]) -> Union[float, np.ndarray]:
data_array = (data_array - self.mean) / np.sqrt(self.var + self.eps)
if self.clip_max:
data_array = np.clip(data_array, -self.clip_max, self.clip_max)
return data_array
def update(self, data_array: np.ndarray) -> None:
"""Add a batch of item into RMS with the same shape, modify mean/var/count."""
batch_mean, batch_var = np.mean(data_array, axis=0), np.var(data_array, axis=0)
batch_count = len(data_array)
delta = batch_mean - self.mean
total_count = self.count + batch_count
new_mean = self.mean + delta * batch_count / total_count
m_a = self.var * self.count
m_b = batch_var * batch_count
m_2 = m_a + m_b + delta**2 * self.count * batch_count / total_count
new_var = m_2 / total_count
self.mean, self.var = new_mean, new_var
self.count = total_count