Tianshou/examples/actor_critic.py

85 lines
2.8 KiB
Python
Executable File

from __future__ import absolute_import
import tensorflow as tf
import time
import numpy as np
import gym
import tianshou as ts
if __name__ == '__main__':
env = gym.make('CartPole-v0')
observation_dim = env.observation_space.shape
action_dim = env.action_space.n
clip_param = 0.2
num_batches = 10
batch_size = 512
seed = 0
np.random.seed(seed)
tf.set_random_seed(seed)
### 1. build network with pure tf
observation_ph = tf.placeholder(tf.float32, shape=(None,) + observation_dim)
def my_network():
# placeholders defined in this function would be very difficult to manage
net = tf.layers.dense(observation_ph, 64, activation=tf.nn.tanh)
net = tf.layers.dense(net, 64, activation=tf.nn.tanh)
action_logits = tf.layers.dense(net, action_dim, activation=None)
action_dist = tf.distributions.Categorical(logits=action_logits)
value = tf.layers.dense(net, 1, activation=None)
return action_dist, value
### 2. build policy, critic, loss, optimizer
actor = ts.policy.Distributional(my_network, observation_placeholder=observation_ph) # no target network
critic = ts.value_function.StateValue(my_network, observation_placeholder=observation_ph) # no target network
actor_loss = ts.losses.REINFORCE(actor)
critic_loss = ts.losses.value_mse(critic)
total_loss = actor_loss + 1e-2 * critic_loss
optimizer = tf.train.AdamOptimizer(1e-4)
# this hack would be unnecessary if we have a `SharedPolicyValue` class, or hack the trainable_variables management
var_list = list(actor.trainable_variables | critic.trainable_variables)
train_op = optimizer.minimize(total_loss, var_list=var_list)
### 3. define data collection
data_buffer = ts.data.BatchSet()
data_collector = ts.data.DataCollector(
env=env,
policy=actor,
data_buffer=data_buffer,
process_functions=[ts.data.advantage_estimation.nstep_return(n=3, value_function=critic, return_advantage=True)],
managed_networks=[actor, critic],
)
### 4. start training
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())
start_time = time.time()
for i in range(1000):
# collect data
data_collector.collect(num_episodes=50)
# print current return
print('Epoch {}:'.format(i))
data_buffer.statistics()
# update network
for _ in range(num_batches):
feed_dict = data_collector.next_batch(batch_size)
sess.run(train_op, feed_dict=feed_dict)
print('Elapsed time: {:.1f} min'.format((time.time() - start_time) / 60))