2017-11-17 15:09:07 +08:00

129 lines
4.6 KiB
Python

import numpy as np
import math
import time
c_puct = 5.
class MCTSNode(object):
def __init__(self, parent, action, state, action_num, prior):
self.parent = parent
self.action = action
self.children = {}
self.state = state
self.action_num = action_num
self.prior = prior
def selection(self):
raise NotImplementedError("Need to implement function selection")
def backpropagation(self, action, value, is_terminated):
raise NotImplementedError("Need to implement function backpropagation")
def expansion(self, simulator, action):
raise NotImplementedError("Need to implement function expansion")
def simulation(self, state, evaluator):
raise NotImplementedError("Need to implement function simulation")
class UCTNode(MCTSNode):
def __init__(self, parent, action, state, action_num, prior):
super(UCTNode, self).__init__(parent, action, state, action_num, prior)
self.Q = np.zeros([action_num])
self.W = np.zeros([action_num])
self.N = np.zeros([action_num])
self.ucb = self.Q + c_puct * self.prior * math.sqrt(np.sum(self.N)) / (self.N + 1)
self.is_terminated = False
def selection(self):
if self.is_terminated:
action = None
else:
action = np.argmax(self.ucb)
if action in self.children.keys():
self.children[action].selection()
else:
return self, action
def backpropagation(self, action, value, is_terminated):
self.is_terminated = is_terminated
self.N[action] += 1
self.W[action] += value
for i in range(self.action_num):
if self.N[i] != 0:
self.Q[i] = (self.W[i] + 0.)/self.N[i]
self.ucb = self.Q + c_puct * self.prior * math.sqrt(np.sum(self.N)) / (self.N + 1)
if self.parent is not None:
self.parent.backpropagation(self.parent.action, value)
def expansion(self, simulator, action):
next_state = simulator.step_forward(self.state, action)
# TODO: Let users/evaluator give the prior
prior = np.ones([self.action_num]) / self.action_num
self.children[action] = UCTNode(self, action, next_state, self.action_num, prior)
def simulation(self, evaluator, state):
value, is_ternimated = evaluator(state)
return value, is_ternimated
class TSNode(MCTSNode):
def __init__(self, parent, action, state, action_num, prior, method="Gaussian"):
super(TSNode, self).__init__(parent, action, state, action_num, prior)
if method == "Beta":
self.alpha = np.ones([action_num])
self.beta = np.ones([action_num])
if method == "Gaussian":
self.mu = np.zeros([action_num])
self.sigma = np.zeros([action_num])
class ActionNode:
def __init__(self, parent, action):
self.parent = parent
self.action = action
self.children = {}
self.value = {}
class MCTS:
def __init__(self, simulator, evaluator, root, action_num, prior, method="UCT", max_step=None, max_time=None):
self.simulator = simulator
self.evaluator = evaluator
if method == "UCT":
self.root = UCTNode(None, None, root, action_num, prior)
if method == "TS":
self.root = TSNode(None, None, root, action_num, prior)
if max_step is not None:
self.step = 0
self.max_step = max_step
if max_time is not None:
self.start_time = time.time()
self.max_time = max_time
if max_step is None and max_time is None:
raise ValueError("Need a stop criteria!")
while (max_step is not None and self.step < self.max_step or max_step is None) \
and (max_time is not None and time.time() - self.start_time < self.max_time or max_time is None):
self.expand()
if max_step is not None:
self.step += 1
def expand(self):
print(self.root.Q)
print(self.root.N)
print(self.root.W)
node, new_action = self.root.selection()
print(node.state, new_action)
if new_action is None:
value, is_terminated = node.simulation(self.evaluator, node.state)
node.backpropagation(node.action, value, is_terminated)
print(value)
else:
node.expansion(self.simulator, new_action)
value, is_terminated = node.simulation(self.evaluator, node.children[new_action].state)
node.backpropagation(new_action, value, is_terminated)
if __name__=="__main__":
pass