2020-05-12 11:31:47 +08:00

170 lines
6.7 KiB
Python

import torch
import numpy as np
from copy import deepcopy
import torch.nn.functional as F
from typing import Dict, Tuple, Union, Optional
from tianshou.policy import BasePolicy
# from tianshou.exploration import OUNoise
from tianshou.data import Batch, ReplayBuffer
class DDPGPolicy(BasePolicy):
"""Implementation of Deep Deterministic Policy Gradient. arXiv:1509.02971
:param torch.nn.Module actor: the actor network following the rules in
:class:`~tianshou.policy.BasePolicy`. (s -> logits)
:param torch.optim.Optimizer actor_optim: the optimizer for actor network.
:param torch.nn.Module critic: the critic network. (s, a -> Q(s, a))
:param torch.optim.Optimizer critic_optim: the optimizer for critic
network.
:param float tau: param for soft update of the target network, defaults to
0.005.
:param float gamma: discount factor, in [0, 1], defaults to 0.99.
:param float exploration_noise: the noise intensity, add to the action,
defaults to 0.1.
:param action_range: the action range (minimum, maximum).
:type action_range: (float, float)
:param bool reward_normalization: normalize the reward to Normal(0, 1),
defaults to ``False``.
:param bool ignore_done: ignore the done flag while training the policy,
defaults to ``False``.
.. seealso::
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
explanation.
"""
def __init__(self,
actor: torch.nn.Module,
actor_optim: torch.optim.Optimizer,
critic: torch.nn.Module,
critic_optim: torch.optim.Optimizer,
tau: Optional[float] = 0.005,
gamma: Optional[float] = 0.99,
exploration_noise: Optional[float] = 0.1,
action_range: Optional[Tuple[float, float]] = None,
reward_normalization: Optional[bool] = False,
ignore_done: Optional[bool] = False,
**kwargs) -> None:
super().__init__(**kwargs)
if actor is not None:
self.actor, self.actor_old = actor, deepcopy(actor)
self.actor_old.eval()
self.actor_optim = actor_optim
if critic is not None:
self.critic, self.critic_old = critic, deepcopy(critic)
self.critic_old.eval()
self.critic_optim = critic_optim
assert 0 <= tau <= 1, 'tau should in [0, 1]'
self._tau = tau
assert 0 <= gamma <= 1, 'gamma should in [0, 1]'
self._gamma = gamma
assert 0 <= exploration_noise, 'noise should not be negative'
self._eps = exploration_noise
assert action_range is not None
self._range = action_range
self._action_bias = (action_range[0] + action_range[1]) / 2
self._action_scale = (action_range[1] - action_range[0]) / 2
# it is only a little difference to use rand_normal
# self.noise = OUNoise()
self._rm_done = ignore_done
self._rew_norm = reward_normalization
self.__eps = np.finfo(np.float32).eps.item()
def set_eps(self, eps: float) -> None:
"""Set the eps for exploration."""
self._eps = eps
def train(self) -> None:
"""Set the module in training mode, except for the target network."""
self.training = True
self.actor.train()
self.critic.train()
def eval(self) -> None:
"""Set the module in evaluation mode, except for the target network."""
self.training = False
self.actor.eval()
self.critic.eval()
def sync_weight(self) -> None:
"""Soft-update the weight for the target network."""
for o, n in zip(self.actor_old.parameters(), self.actor.parameters()):
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
for o, n in zip(
self.critic_old.parameters(), self.critic.parameters()):
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
def process_fn(self, batch: Batch, buffer: ReplayBuffer,
indice: np.ndarray) -> Batch:
if self._rew_norm:
bfr = buffer.rew[:min(len(buffer), 1000)] # avoid large buffer
mean, std = bfr.mean(), bfr.std()
if std > self.__eps:
batch.rew = (batch.rew - mean) / std
if self._rm_done:
batch.done = batch.done * 0.
return batch
def forward(self, batch: Batch,
state: Optional[Union[dict, Batch, np.ndarray]] = None,
model: Optional[str] = 'actor',
input: Optional[str] = 'obs',
eps: Optional[float] = None,
**kwargs) -> Batch:
"""Compute action over the given batch data.
:param float eps: in [0, 1], for exploration use.
:return: A :class:`~tianshou.data.Batch` which has 2 keys:
* ``act`` the action.
* ``state`` the hidden state.
.. seealso::
Please refer to :meth:`~tianshou.policy.BasePolicy.forward` for
more detailed explanation.
"""
model = getattr(self, model)
obs = getattr(batch, input)
logits, h = model(obs, state=state, info=batch.info)
logits += self._action_bias
if eps is None:
eps = self._eps
if eps > 0:
# noise = np.random.normal(0, eps, size=logits.shape)
# logits += torch.tensor(noise, device=logits.device)
# noise = self.noise(logits.shape, eps)
logits += torch.randn(
size=logits.shape, device=logits.device) * eps
logits = logits.clamp(self._range[0], self._range[1])
return Batch(act=logits, state=h)
def learn(self, batch: Batch, **kwargs) -> Dict[str, float]:
with torch.no_grad():
target_q = self.critic_old(batch.obs_next, self(
batch, model='actor_old', input='obs_next', eps=0).act)
dev = target_q.device
rew = torch.tensor(batch.rew,
dtype=torch.float, device=dev)[:, None]
done = torch.tensor(batch.done,
dtype=torch.float, device=dev)[:, None]
target_q = (rew + (1. - done) * self._gamma * target_q)
current_q = self.critic(batch.obs, batch.act)
critic_loss = F.mse_loss(current_q, target_q)
self.critic_optim.zero_grad()
critic_loss.backward()
self.critic_optim.step()
actor_loss = -self.critic(batch.obs, self(batch, eps=0).act).mean()
self.actor_optim.zero_grad()
actor_loss.backward()
self.actor_optim.step()
self.sync_weight()
return {
'loss/actor': actor_loss.item(),
'loss/critic': critic_loss.item(),
}