Tianshou/examples/box2d/lunarlander_dqn.py
ChenDRAG 9b61bc620c add logger (#295)
This PR focus on refactor of logging method to solve bug of nan reward and log interval. After these two pr, hopefully fundamental change of tianshou/data is finished. We then can concentrate on building benchmarks of tianshou finally.

Things changed:

1. trainer now accepts logger (BasicLogger or LazyLogger) instead of writer;
2. remove utils.SummaryWriter;
2021-02-24 14:48:42 +08:00

124 lines
5.0 KiB
Python

import os
import gym
import torch
import pprint
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.policy import DQNPolicy
from tianshou.utils import BasicLogger
from tianshou.utils.net.common import Net
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import DummyVectorEnv, SubprocVectorEnv
def get_args():
parser = argparse.ArgumentParser()
# the parameters are found by Optuna
parser.add_argument('--task', type=str, default='LunarLander-v2')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--eps-test', type=float, default=0.01)
parser.add_argument('--eps-train', type=float, default=0.73)
parser.add_argument('--buffer-size', type=int, default=100000)
parser.add_argument('--lr', type=float, default=0.013)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--n-step', type=int, default=4)
parser.add_argument('--target-update-freq', type=int, default=500)
parser.add_argument('--epoch', type=int, default=10)
parser.add_argument('--step-per-epoch', type=int, default=80000)
parser.add_argument('--step-per-collect', type=int, default=16)
parser.add_argument('--update-per-step', type=float, default=0.0625)
parser.add_argument('--batch-size', type=int, default=128)
parser.add_argument('--hidden-sizes', type=int,
nargs='*', default=[128, 128])
parser.add_argument('--dueling-q-hidden-sizes', type=int,
nargs='*', default=[128, 128])
parser.add_argument('--dueling-v-hidden-sizes', type=int,
nargs='*', default=[128, 128])
parser.add_argument('--training-num', type=int, default=16)
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
return parser.parse_args()
def test_dqn(args=get_args()):
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
# train_envs = gym.make(args.task)
# you can also use tianshou.env.SubprocVectorEnv
train_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
test_envs = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
Q_param = {"hidden_sizes": args.dueling_q_hidden_sizes}
V_param = {"hidden_sizes": args.dueling_v_hidden_sizes}
net = Net(args.state_shape, args.action_shape,
hidden_sizes=args.hidden_sizes, device=args.device,
dueling_param=(Q_param, V_param)).to(args.device)
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
policy = DQNPolicy(
net, optim, args.gamma, args.n_step,
target_update_freq=args.target_update_freq)
# collector
train_collector = Collector(
policy, train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)),
exploration_noise=True)
test_collector = Collector(policy, test_envs, exploration_noise=True)
# policy.set_eps(1)
train_collector.collect(n_step=args.batch_size * args.training_num)
# log
log_path = os.path.join(args.logdir, args.task, 'dqn')
writer = SummaryWriter(log_path)
logger = BasicLogger(writer)
def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
def stop_fn(mean_rewards):
return mean_rewards >= env.spec.reward_threshold
def train_fn(epoch, env_step): # exp decay
eps = max(args.eps_train * (1 - 5e-6) ** env_step, args.eps_test)
policy.set_eps(eps)
def test_fn(epoch, env_step):
policy.set_eps(args.eps_test)
# trainer
result = offpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.step_per_collect, args.test_num, args.batch_size,
update_per_step=args.update_per_step, stop_fn=stop_fn, train_fn=train_fn,
test_fn=test_fn, save_fn=save_fn, logger=logger)
assert stop_fn(result['best_reward'])
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
policy.eval()
policy.set_eps(args.eps_test)
test_envs.seed(args.seed)
test_collector.reset()
result = test_collector.collect(n_episode=args.test_num, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
if __name__ == '__main__':
test_dqn(get_args())