161 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			161 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import argparse
 | |
| import os
 | |
| import pprint
 | |
| 
 | |
| import gym
 | |
| import numpy as np
 | |
| import torch
 | |
| from torch.utils.tensorboard import SummaryWriter
 | |
| 
 | |
| from tianshou.data import Collector, VectorReplayBuffer
 | |
| from tianshou.env import DummyVectorEnv
 | |
| from tianshou.policy import PPOPolicy
 | |
| from tianshou.trainer import onpolicy_trainer
 | |
| from tianshou.utils import TensorboardLogger
 | |
| from tianshou.utils.net.common import ActorCritic, DataParallelNet, Net
 | |
| from tianshou.utils.net.discrete import Actor, Critic
 | |
| 
 | |
| 
 | |
| def get_args():
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser.add_argument('--task', type=str, default='CartPole-v0')
 | |
|     parser.add_argument('--reward-threshold', type=float, default=None)
 | |
|     parser.add_argument('--seed', type=int, default=1626)
 | |
|     parser.add_argument('--buffer-size', type=int, default=20000)
 | |
|     parser.add_argument('--lr', type=float, default=3e-4)
 | |
|     parser.add_argument('--gamma', type=float, default=0.99)
 | |
|     parser.add_argument('--epoch', type=int, default=10)
 | |
|     parser.add_argument('--step-per-epoch', type=int, default=50000)
 | |
|     parser.add_argument('--step-per-collect', type=int, default=2000)
 | |
|     parser.add_argument('--repeat-per-collect', type=int, default=10)
 | |
|     parser.add_argument('--batch-size', type=int, default=64)
 | |
|     parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64])
 | |
|     parser.add_argument('--training-num', type=int, default=20)
 | |
|     parser.add_argument('--test-num', type=int, default=100)
 | |
|     parser.add_argument('--logdir', type=str, default='log')
 | |
|     parser.add_argument('--render', type=float, default=0.)
 | |
|     parser.add_argument(
 | |
|         '--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
 | |
|     )
 | |
|     # ppo special
 | |
|     parser.add_argument('--vf-coef', type=float, default=0.5)
 | |
|     parser.add_argument('--ent-coef', type=float, default=0.0)
 | |
|     parser.add_argument('--eps-clip', type=float, default=0.2)
 | |
|     parser.add_argument('--max-grad-norm', type=float, default=0.5)
 | |
|     parser.add_argument('--gae-lambda', type=float, default=0.95)
 | |
|     parser.add_argument('--rew-norm', type=int, default=0)
 | |
|     parser.add_argument('--norm-adv', type=int, default=0)
 | |
|     parser.add_argument('--recompute-adv', type=int, default=0)
 | |
|     parser.add_argument('--dual-clip', type=float, default=None)
 | |
|     parser.add_argument('--value-clip', type=int, default=0)
 | |
|     args = parser.parse_known_args()[0]
 | |
|     return args
 | |
| 
 | |
| 
 | |
| def test_ppo(args=get_args()):
 | |
|     env = gym.make(args.task)
 | |
|     args.state_shape = env.observation_space.shape or env.observation_space.n
 | |
|     args.action_shape = env.action_space.shape or env.action_space.n
 | |
|     if args.reward_threshold is None:
 | |
|         default_reward_threshold = {"CartPole-v0": 195}
 | |
|         args.reward_threshold = default_reward_threshold.get(
 | |
|             args.task, env.spec.reward_threshold
 | |
|         )
 | |
|     # train_envs = gym.make(args.task)
 | |
|     # you can also use tianshou.env.SubprocVectorEnv
 | |
|     train_envs = DummyVectorEnv(
 | |
|         [lambda: gym.make(args.task) for _ in range(args.training_num)]
 | |
|     )
 | |
|     # test_envs = gym.make(args.task)
 | |
|     test_envs = DummyVectorEnv(
 | |
|         [lambda: gym.make(args.task) for _ in range(args.test_num)]
 | |
|     )
 | |
|     # seed
 | |
|     np.random.seed(args.seed)
 | |
|     torch.manual_seed(args.seed)
 | |
|     train_envs.seed(args.seed)
 | |
|     test_envs.seed(args.seed)
 | |
|     # model
 | |
|     net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
 | |
|     if torch.cuda.is_available():
 | |
|         actor = DataParallelNet(
 | |
|             Actor(net, args.action_shape, device=None).to(args.device)
 | |
|         )
 | |
|         critic = DataParallelNet(Critic(net, device=None).to(args.device))
 | |
|     else:
 | |
|         actor = Actor(net, args.action_shape, device=args.device).to(args.device)
 | |
|         critic = Critic(net, device=args.device).to(args.device)
 | |
|     actor_critic = ActorCritic(actor, critic)
 | |
|     # orthogonal initialization
 | |
|     for m in actor_critic.modules():
 | |
|         if isinstance(m, torch.nn.Linear):
 | |
|             torch.nn.init.orthogonal_(m.weight)
 | |
|             torch.nn.init.zeros_(m.bias)
 | |
|     optim = torch.optim.Adam(actor_critic.parameters(), lr=args.lr)
 | |
|     dist = torch.distributions.Categorical
 | |
|     policy = PPOPolicy(
 | |
|         actor,
 | |
|         critic,
 | |
|         optim,
 | |
|         dist,
 | |
|         discount_factor=args.gamma,
 | |
|         max_grad_norm=args.max_grad_norm,
 | |
|         eps_clip=args.eps_clip,
 | |
|         vf_coef=args.vf_coef,
 | |
|         ent_coef=args.ent_coef,
 | |
|         gae_lambda=args.gae_lambda,
 | |
|         reward_normalization=args.rew_norm,
 | |
|         dual_clip=args.dual_clip,
 | |
|         value_clip=args.value_clip,
 | |
|         action_space=env.action_space,
 | |
|         deterministic_eval=True,
 | |
|         advantage_normalization=args.norm_adv,
 | |
|         recompute_advantage=args.recompute_adv
 | |
|     )
 | |
|     # collector
 | |
|     train_collector = Collector(
 | |
|         policy, train_envs, VectorReplayBuffer(args.buffer_size, len(train_envs))
 | |
|     )
 | |
|     test_collector = Collector(policy, test_envs)
 | |
|     # log
 | |
|     log_path = os.path.join(args.logdir, args.task, 'ppo')
 | |
|     writer = SummaryWriter(log_path)
 | |
|     logger = TensorboardLogger(writer)
 | |
| 
 | |
|     def save_fn(policy):
 | |
|         torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
 | |
| 
 | |
|     def stop_fn(mean_rewards):
 | |
|         return mean_rewards >= args.reward_threshold
 | |
| 
 | |
|     # trainer
 | |
|     result = onpolicy_trainer(
 | |
|         policy,
 | |
|         train_collector,
 | |
|         test_collector,
 | |
|         args.epoch,
 | |
|         args.step_per_epoch,
 | |
|         args.repeat_per_collect,
 | |
|         args.test_num,
 | |
|         args.batch_size,
 | |
|         step_per_collect=args.step_per_collect,
 | |
|         stop_fn=stop_fn,
 | |
|         save_fn=save_fn,
 | |
|         logger=logger
 | |
|     )
 | |
|     assert stop_fn(result['best_reward'])
 | |
| 
 | |
|     if __name__ == '__main__':
 | |
|         pprint.pprint(result)
 | |
|         # Let's watch its performance!
 | |
|         env = gym.make(args.task)
 | |
|         policy.eval()
 | |
|         collector = Collector(policy, env)
 | |
|         result = collector.collect(n_episode=1, render=args.render)
 | |
|         rews, lens = result["rews"], result["lens"]
 | |
|         print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     test_ppo()
 |