209 lines
7.1 KiB
Python
209 lines
7.1 KiB
Python
import argparse
|
|
import os
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.data import Collector, VectorReplayBuffer
|
|
from tianshou.policy import ImitationPolicy, SACPolicy
|
|
from tianshou.trainer import offpolicy_trainer
|
|
from tianshou.utils import TensorboardLogger
|
|
from tianshou.utils.net.common import Net
|
|
from tianshou.utils.net.continuous import Actor, ActorProb, Critic
|
|
|
|
try:
|
|
import envpool
|
|
except ImportError:
|
|
envpool = None
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--task', type=str, default='Pendulum-v0')
|
|
parser.add_argument('--reward-threshold', type=float, default=None)
|
|
parser.add_argument('--seed', type=int, default=1)
|
|
parser.add_argument('--buffer-size', type=int, default=20000)
|
|
parser.add_argument('--actor-lr', type=float, default=1e-3)
|
|
parser.add_argument('--critic-lr', type=float, default=1e-3)
|
|
parser.add_argument('--il-lr', type=float, default=1e-3)
|
|
parser.add_argument('--gamma', type=float, default=0.99)
|
|
parser.add_argument('--tau', type=float, default=0.005)
|
|
parser.add_argument('--alpha', type=float, default=0.2)
|
|
parser.add_argument('--auto-alpha', type=int, default=1)
|
|
parser.add_argument('--alpha-lr', type=float, default=3e-4)
|
|
parser.add_argument('--epoch', type=int, default=5)
|
|
parser.add_argument('--step-per-epoch', type=int, default=24000)
|
|
parser.add_argument('--il-step-per-epoch', type=int, default=500)
|
|
parser.add_argument('--step-per-collect', type=int, default=10)
|
|
parser.add_argument('--update-per-step', type=float, default=0.1)
|
|
parser.add_argument('--batch-size', type=int, default=128)
|
|
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[128, 128])
|
|
parser.add_argument(
|
|
'--imitation-hidden-sizes', type=int, nargs='*', default=[128, 128]
|
|
)
|
|
parser.add_argument('--training-num', type=int, default=10)
|
|
parser.add_argument('--test-num', type=int, default=100)
|
|
parser.add_argument('--logdir', type=str, default='log')
|
|
parser.add_argument('--render', type=float, default=0.)
|
|
parser.add_argument('--rew-norm', action="store_true", default=False)
|
|
parser.add_argument('--n-step', type=int, default=3)
|
|
parser.add_argument(
|
|
'--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
|
|
)
|
|
args = parser.parse_known_args()[0]
|
|
return args
|
|
|
|
|
|
@pytest.mark.skipif(envpool is None, reason="EnvPool doesn't support this platform")
|
|
def test_sac_with_il(args=get_args()):
|
|
# if you want to use python vector env, please refer to other test scripts
|
|
train_envs = env = envpool.make_gym(
|
|
args.task, num_envs=args.training_num, seed=args.seed
|
|
)
|
|
test_envs = envpool.make_gym(args.task, num_envs=args.test_num, seed=args.seed)
|
|
args.state_shape = env.observation_space.shape or env.observation_space.n
|
|
args.action_shape = env.action_space.shape or env.action_space.n
|
|
args.max_action = env.action_space.high[0]
|
|
if args.reward_threshold is None:
|
|
default_reward_threshold = {"Pendulum-v0": -250, "Pendulum-v1": -250}
|
|
args.reward_threshold = default_reward_threshold.get(
|
|
args.task, env.spec.reward_threshold
|
|
)
|
|
# you can also use tianshou.env.SubprocVectorEnv
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
# model
|
|
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
|
|
actor = ActorProb(
|
|
net,
|
|
args.action_shape,
|
|
max_action=args.max_action,
|
|
device=args.device,
|
|
unbounded=True
|
|
).to(args.device)
|
|
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
|
|
net_c1 = Net(
|
|
args.state_shape,
|
|
args.action_shape,
|
|
hidden_sizes=args.hidden_sizes,
|
|
concat=True,
|
|
device=args.device
|
|
)
|
|
critic1 = Critic(net_c1, device=args.device).to(args.device)
|
|
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
|
|
net_c2 = Net(
|
|
args.state_shape,
|
|
args.action_shape,
|
|
hidden_sizes=args.hidden_sizes,
|
|
concat=True,
|
|
device=args.device
|
|
)
|
|
critic2 = Critic(net_c2, device=args.device).to(args.device)
|
|
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
|
|
|
|
if args.auto_alpha:
|
|
target_entropy = -np.prod(env.action_space.shape)
|
|
log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
|
|
alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
|
|
args.alpha = (target_entropy, log_alpha, alpha_optim)
|
|
|
|
policy = SACPolicy(
|
|
actor,
|
|
actor_optim,
|
|
critic1,
|
|
critic1_optim,
|
|
critic2,
|
|
critic2_optim,
|
|
tau=args.tau,
|
|
gamma=args.gamma,
|
|
alpha=args.alpha,
|
|
reward_normalization=args.rew_norm,
|
|
estimation_step=args.n_step,
|
|
action_space=env.action_space
|
|
)
|
|
# collector
|
|
train_collector = Collector(
|
|
policy,
|
|
train_envs,
|
|
VectorReplayBuffer(args.buffer_size, len(train_envs)),
|
|
exploration_noise=True
|
|
)
|
|
test_collector = Collector(policy, test_envs)
|
|
# train_collector.collect(n_step=args.buffer_size)
|
|
# log
|
|
log_path = os.path.join(args.logdir, args.task, 'sac')
|
|
writer = SummaryWriter(log_path)
|
|
logger = TensorboardLogger(writer)
|
|
|
|
def save_best_fn(policy):
|
|
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
|
|
|
|
def stop_fn(mean_rewards):
|
|
return mean_rewards >= args.reward_threshold
|
|
|
|
# trainer
|
|
result = offpolicy_trainer(
|
|
policy,
|
|
train_collector,
|
|
test_collector,
|
|
args.epoch,
|
|
args.step_per_epoch,
|
|
args.step_per_collect,
|
|
args.test_num,
|
|
args.batch_size,
|
|
update_per_step=args.update_per_step,
|
|
stop_fn=stop_fn,
|
|
save_best_fn=save_best_fn,
|
|
logger=logger
|
|
)
|
|
assert stop_fn(result['best_reward'])
|
|
|
|
# here we define an imitation collector with a trivial policy
|
|
policy.eval()
|
|
if args.task.startswith("Pendulum"):
|
|
args.reward_threshold -= 50 # lower the goal
|
|
net = Actor(
|
|
Net(
|
|
args.state_shape,
|
|
hidden_sizes=args.imitation_hidden_sizes,
|
|
device=args.device
|
|
),
|
|
args.action_shape,
|
|
max_action=args.max_action,
|
|
device=args.device
|
|
).to(args.device)
|
|
optim = torch.optim.Adam(net.parameters(), lr=args.il_lr)
|
|
il_policy = ImitationPolicy(
|
|
net,
|
|
optim,
|
|
action_space=env.action_space,
|
|
action_scaling=True,
|
|
action_bound_method="clip"
|
|
)
|
|
il_test_collector = Collector(
|
|
il_policy,
|
|
envpool.make_gym(args.task, num_envs=args.test_num, seed=args.seed),
|
|
)
|
|
train_collector.reset()
|
|
result = offpolicy_trainer(
|
|
il_policy,
|
|
train_collector,
|
|
il_test_collector,
|
|
args.epoch,
|
|
args.il_step_per_epoch,
|
|
args.step_per_collect,
|
|
args.test_num,
|
|
args.batch_size,
|
|
stop_fn=stop_fn,
|
|
save_best_fn=save_best_fn,
|
|
logger=logger
|
|
)
|
|
assert stop_fn(result['best_reward'])
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_sac_with_il()
|