Closes #947 This removes all kwargs from all policy constructors. While doing that, I also improved several names and added a whole lot of TODOs. ## Functional changes: 1. Added possibility to pass None as `critic2` and `critic2_optim`. In fact, the default behavior then should cover the absolute majority of cases 2. Added a function called `clone_optimizer` as a temporary measure to support passing `critic2_optim=None` ## Breaking changes: 1. `action_space` is no longer optional. In fact, it already was non-optional, as there was a ValueError in BasePolicy.init. So now several examples were fixed to reflect that 2. `reward_normalization` removed from DDPG and children. It was never allowed to pass it as `True` there, an error would have been raised in `compute_n_step_reward`. Now I removed it from the interface 3. renamed `critic1` and similar to `critic`, in order to have uniform interfaces. Note that the `critic` in DDPG was optional for the sole reason that child classes used `critic1`. I removed this optionality (DDPG can't do anything with `critic=None`) 4. Several renamings of fields (mostly private to public, so backwards compatible) ## Additional changes: 1. Removed type and default declaration from docstring. This kind of duplication is really not necessary 2. Policy constructors are now only called using named arguments, not a fragile mixture of positional and named as before 5. Minor beautifications in typing and code 6. Generally shortened docstrings and made them uniform across all policies (hopefully) ## Comment: With these changes, several problems in tianshou's inheritance hierarchy become more apparent. I tried highlighting them for future work. --------- Co-authored-by: Dominik Jain <d.jain@appliedai.de>
		
			
				
	
	
		
			134 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			134 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import argparse
 | |
| import os
 | |
| import pprint
 | |
| 
 | |
| import numpy as np
 | |
| import pytest
 | |
| import torch
 | |
| from torch.utils.tensorboard import SummaryWriter
 | |
| 
 | |
| from tianshou.data import Collector, VectorReplayBuffer
 | |
| from tianshou.policy import PSRLPolicy
 | |
| from tianshou.trainer import OnpolicyTrainer
 | |
| from tianshou.utils import LazyLogger, TensorboardLogger, WandbLogger
 | |
| 
 | |
| try:
 | |
|     import envpool
 | |
| except ImportError:
 | |
|     envpool = None
 | |
| 
 | |
| 
 | |
| def get_args():
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser.add_argument("--task", type=str, default="NChain-v0")
 | |
|     parser.add_argument("--reward-threshold", type=float, default=None)
 | |
|     parser.add_argument("--seed", type=int, default=1)
 | |
|     parser.add_argument("--buffer-size", type=int, default=50000)
 | |
|     parser.add_argument("--epoch", type=int, default=5)
 | |
|     parser.add_argument("--step-per-epoch", type=int, default=1000)
 | |
|     parser.add_argument("--episode-per-collect", type=int, default=1)
 | |
|     parser.add_argument("--training-num", type=int, default=1)
 | |
|     parser.add_argument("--test-num", type=int, default=10)
 | |
|     parser.add_argument("--logdir", type=str, default="log")
 | |
|     parser.add_argument("--render", type=float, default=0.0)
 | |
|     parser.add_argument("--rew-mean-prior", type=float, default=0.0)
 | |
|     parser.add_argument("--rew-std-prior", type=float, default=1.0)
 | |
|     parser.add_argument("--gamma", type=float, default=0.99)
 | |
|     parser.add_argument("--eps", type=float, default=0.01)
 | |
|     parser.add_argument("--add-done-loop", action="store_true", default=False)
 | |
|     parser.add_argument(
 | |
|         "--logger",
 | |
|         type=str,
 | |
|         default="none",  # TODO: Change to "wandb" once wandb supports Gym >=0.26.0
 | |
|         choices=["wandb", "tensorboard", "none"],
 | |
|     )
 | |
|     return parser.parse_known_args()[0]
 | |
| 
 | |
| 
 | |
| @pytest.mark.skipif(envpool is None, reason="EnvPool doesn't support this platform")
 | |
| def test_psrl(args=get_args()):
 | |
|     # if you want to use python vector env, please refer to other test scripts
 | |
|     train_envs = env = envpool.make_gymnasium(args.task, num_envs=args.training_num, seed=args.seed)
 | |
|     test_envs = envpool.make_gymnasium(args.task, num_envs=args.test_num, seed=args.seed)
 | |
|     if args.reward_threshold is None:
 | |
|         default_reward_threshold = {"NChain-v0": 3400}
 | |
|         args.reward_threshold = default_reward_threshold.get(args.task, env.spec.reward_threshold)
 | |
|     print("reward threshold:", args.reward_threshold)
 | |
|     args.state_shape = env.observation_space.shape or env.observation_space.n
 | |
|     args.action_shape = env.action_space.shape or env.action_space.n
 | |
|     # seed
 | |
|     np.random.seed(args.seed)
 | |
|     torch.manual_seed(args.seed)
 | |
|     # model
 | |
|     n_action = args.action_shape
 | |
|     n_state = args.state_shape
 | |
|     trans_count_prior = np.ones((n_state, n_action, n_state))
 | |
|     rew_mean_prior = np.full((n_state, n_action), args.rew_mean_prior)
 | |
|     rew_std_prior = np.full((n_state, n_action), args.rew_std_prior)
 | |
|     policy = PSRLPolicy(
 | |
|         trans_count_prior=trans_count_prior,
 | |
|         rew_mean_prior=rew_mean_prior,
 | |
|         rew_std_prior=rew_std_prior,
 | |
|         action_space=env.action_space,
 | |
|         discount_factor=args.gamma,
 | |
|         epsilon=args.eps,
 | |
|         add_done_loop=args.add_done_loop,
 | |
|     )
 | |
|     # collector
 | |
|     train_collector = Collector(
 | |
|         policy,
 | |
|         train_envs,
 | |
|         VectorReplayBuffer(args.buffer_size, len(train_envs)),
 | |
|         exploration_noise=True,
 | |
|     )
 | |
|     test_collector = Collector(policy, test_envs)
 | |
|     # Logger
 | |
|     if args.logger == "wandb":
 | |
|         logger = WandbLogger(save_interval=1, project="psrl", name="wandb_test", config=args)
 | |
|     if args.logger != "none":
 | |
|         log_path = os.path.join(args.logdir, args.task, "psrl")
 | |
|         writer = SummaryWriter(log_path)
 | |
|         writer.add_text("args", str(args))
 | |
|         if args.logger == "tensorboard":
 | |
|             logger = TensorboardLogger(writer)
 | |
|         else:
 | |
|             logger.load(writer)
 | |
|     else:
 | |
|         logger = LazyLogger()
 | |
| 
 | |
|     def stop_fn(mean_rewards):
 | |
|         return mean_rewards >= args.reward_threshold
 | |
| 
 | |
|     train_collector.collect(n_step=args.buffer_size, random=True)
 | |
|     # trainer, test it without logger
 | |
|     result = OnpolicyTrainer(
 | |
|         policy=policy,
 | |
|         train_collector=train_collector,
 | |
|         test_collector=test_collector,
 | |
|         max_epoch=args.epoch,
 | |
|         step_per_epoch=args.step_per_epoch,
 | |
|         repeat_per_collect=1,
 | |
|         episode_per_test=args.test_num,
 | |
|         batch_size=0,
 | |
|         episode_per_collect=args.episode_per_collect,
 | |
|         stop_fn=stop_fn,
 | |
|         logger=logger,
 | |
|         test_in_train=False,
 | |
|     ).run()
 | |
| 
 | |
|     if __name__ == "__main__":
 | |
|         pprint.pprint(result)
 | |
|         # Let's watch its performance!
 | |
|         policy.eval()
 | |
|         test_envs.seed(args.seed)
 | |
|         test_collector.reset()
 | |
|         result = test_collector.collect(n_episode=args.test_num, render=args.render)
 | |
|         rews, lens = result["rews"], result["lens"]
 | |
|         print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
 | |
|     elif env.spec.reward_threshold:
 | |
|         assert result["best_reward"] >= env.spec.reward_threshold
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     test_psrl()
 |