157 lines
5.6 KiB
Python

from abc import ABC, abstractmethod
from collections.abc import Sequence
from enum import Enum
import torch
from torch import nn
from tianshou.highlevel.env import Environments, EnvType
from tianshou.highlevel.module.core import TDevice, init_linear_orthogonal
from tianshou.utils.net import continuous, discrete
from tianshou.utils.net.common import BaseActor, Net
from tianshou.utils.string import ToStringMixin
class ContinuousActorType(Enum):
GAUSSIAN = "gaussian"
DETERMINISTIC = "deterministic"
UNSUPPORTED = "unsupported"
class ActorFactory(ToStringMixin, ABC):
@abstractmethod
def create_module(self, envs: Environments, device: TDevice) -> BaseActor | nn.Module:
pass
@staticmethod
def _init_linear(actor: torch.nn.Module) -> None:
"""Initializes linear layers of an actor module using default mechanisms.
:param module: the actor module.
"""
init_linear_orthogonal(actor)
if hasattr(actor, "mu"):
# For continuous action spaces with Gaussian policies
# do last policy layer scaling, this will make initial actions have (close to)
# 0 mean and std, and will help boost performances,
# see https://arxiv.org/abs/2006.05990, Fig.24 for details
for m in actor.mu.modules(): # type: ignore
if isinstance(m, torch.nn.Linear):
m.weight.data.copy_(0.01 * m.weight.data)
class ActorFactoryDefault(ActorFactory):
"""An actor factory which, depending on the type of environment, creates a suitable MLP-based policy."""
DEFAULT_HIDDEN_SIZES = (64, 64)
def __init__(
self,
continuous_actor_type: ContinuousActorType,
hidden_sizes: Sequence[int] = DEFAULT_HIDDEN_SIZES,
continuous_unbounded: bool = False,
continuous_conditioned_sigma: bool = False,
):
self.continuous_actor_type = continuous_actor_type
self.continuous_unbounded = continuous_unbounded
self.continuous_conditioned_sigma = continuous_conditioned_sigma
self.hidden_sizes = hidden_sizes
def create_module(self, envs: Environments, device: TDevice) -> BaseActor:
env_type = envs.get_type()
factory: ActorFactoryContinuousDeterministicNet | ActorFactoryContinuousGaussianNet | ActorFactoryDiscreteNet
if env_type == EnvType.CONTINUOUS:
match self.continuous_actor_type:
case ContinuousActorType.GAUSSIAN:
factory = ActorFactoryContinuousGaussianNet(
self.hidden_sizes,
unbounded=self.continuous_unbounded,
conditioned_sigma=self.continuous_conditioned_sigma,
)
case ContinuousActorType.DETERMINISTIC:
factory = ActorFactoryContinuousDeterministicNet(self.hidden_sizes)
case ContinuousActorType.UNSUPPORTED:
raise ValueError("Continuous action spaces are not supported by the algorithm")
case _:
raise ValueError(self.continuous_actor_type)
return factory.create_module(envs, device)
elif env_type == EnvType.DISCRETE:
factory = ActorFactoryDiscreteNet(self.DEFAULT_HIDDEN_SIZES)
return factory.create_module(envs, device)
else:
raise ValueError(f"{env_type} not supported")
class ActorFactoryContinuous(ActorFactory, ABC):
"""Serves as a type bound for actor factories that are suitable for continuous action spaces."""
class ActorFactoryContinuousDeterministicNet(ActorFactoryContinuous):
def __init__(self, hidden_sizes: Sequence[int]):
self.hidden_sizes = hidden_sizes
def create_module(self, envs: Environments, device: TDevice) -> BaseActor:
net_a = Net(
envs.get_observation_shape(),
hidden_sizes=self.hidden_sizes,
device=device,
)
return continuous.Actor(
net_a,
envs.get_action_shape(),
hidden_sizes=(),
device=device,
).to(device)
class ActorFactoryContinuousGaussianNet(ActorFactoryContinuous):
def __init__(
self,
hidden_sizes: Sequence[int],
unbounded: bool = True,
conditioned_sigma: bool = False,
):
self.hidden_sizes = hidden_sizes
self.unbounded = unbounded
self.conditioned_sigma = conditioned_sigma
def create_module(self, envs: Environments, device: TDevice) -> BaseActor:
net_a = Net(
envs.get_observation_shape(),
hidden_sizes=self.hidden_sizes,
activation=nn.Tanh,
device=device,
)
actor = continuous.ActorProb(
net_a,
envs.get_action_shape(),
unbounded=self.unbounded,
device=device,
conditioned_sigma=self.conditioned_sigma,
).to(device)
# init params
if not self.conditioned_sigma:
torch.nn.init.constant_(actor.sigma_param, -0.5)
self._init_linear(actor)
return actor
class ActorFactoryDiscreteNet(ActorFactory):
def __init__(self, hidden_sizes: Sequence[int]):
self.hidden_sizes = hidden_sizes
def create_module(self, envs: Environments, device: TDevice) -> BaseActor:
net_a = Net(
envs.get_observation_shape(),
hidden_sizes=self.hidden_sizes,
device=device,
)
return discrete.Actor(
net_a,
envs.get_action_shape(),
hidden_sizes=(),
device=device,
).to(device)