The result needs to be tuned after `done` issue fixed. Co-authored-by: n+e <trinkle23897@gmail.com>
98 lines
4.3 KiB
Python
98 lines
4.3 KiB
Python
import time
|
|
import tqdm
|
|
from collections import defaultdict
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
from typing import Dict, List, Union, Callable, Optional
|
|
|
|
from tianshou.policy import BasePolicy
|
|
from tianshou.utils import tqdm_config, MovAvg
|
|
from tianshou.data import Collector, ReplayBuffer
|
|
from tianshou.trainer import test_episode, gather_info
|
|
|
|
|
|
def offline_trainer(
|
|
policy: BasePolicy,
|
|
buffer: ReplayBuffer,
|
|
test_collector: Collector,
|
|
max_epoch: int,
|
|
step_per_epoch: int,
|
|
episode_per_test: Union[int, List[int]],
|
|
batch_size: int,
|
|
test_fn: Optional[Callable[[int, Optional[int]], None]] = None,
|
|
stop_fn: Optional[Callable[[float], bool]] = None,
|
|
save_fn: Optional[Callable[[BasePolicy], None]] = None,
|
|
writer: Optional[SummaryWriter] = None,
|
|
log_interval: int = 1,
|
|
verbose: bool = True,
|
|
) -> Dict[str, Union[float, str]]:
|
|
"""A wrapper for offline trainer procedure.
|
|
|
|
The "step" in trainer means a policy network update.
|
|
|
|
:param policy: an instance of the :class:`~tianshou.policy.BasePolicy`
|
|
class.
|
|
:param test_collector: the collector used for testing.
|
|
:type test_collector: :class:`~tianshou.data.Collector`
|
|
:param int max_epoch: the maximum number of epochs for training. The
|
|
training process might be finished before reaching the ``max_epoch``.
|
|
:param int step_per_epoch: the number of policy network updates, so-called
|
|
gradient steps, per epoch.
|
|
:param episode_per_test: the number of episodes for one policy evaluation.
|
|
:param int batch_size: the batch size of sample data, which is going to
|
|
feed in the policy network.
|
|
:param function test_fn: a hook called at the beginning of testing in each
|
|
epoch. It can be used to perform custom additional operations, with the
|
|
signature ``f(num_epoch: int, step_idx: int) -> None``.
|
|
:param function save_fn: a hook called when the undiscounted average mean
|
|
reward in evaluation phase gets better, with the signature ``f(policy:
|
|
BasePolicy) -> None``.
|
|
:param function stop_fn: a function with signature ``f(mean_rewards: float)
|
|
-> bool``, receives the average undiscounted returns of the testing
|
|
result, returns a boolean which indicates whether reaching the goal.
|
|
:param torch.utils.tensorboard.SummaryWriter writer: a TensorBoard
|
|
SummaryWriter; if None is given, it will not write logs to TensorBoard.
|
|
:param int log_interval: the log interval of the writer.
|
|
:param bool verbose: whether to print the information.
|
|
|
|
:return: See :func:`~tianshou.trainer.gather_info`.
|
|
"""
|
|
gradient_step = 0
|
|
best_epoch, best_reward, best_reward_std = -1, -1.0, 0.0
|
|
stat: Dict[str, MovAvg] = defaultdict(MovAvg)
|
|
start_time = time.time()
|
|
test_collector.reset_stat()
|
|
|
|
for epoch in range(1, 1 + max_epoch):
|
|
policy.train()
|
|
with tqdm.trange(
|
|
step_per_epoch, desc=f"Epoch #{epoch}", **tqdm_config
|
|
) as t:
|
|
for i in t:
|
|
gradient_step += 1
|
|
losses = policy.update(batch_size, buffer)
|
|
data = {"gradient_step": str(gradient_step)}
|
|
for k in losses.keys():
|
|
stat[k].add(losses[k])
|
|
data[k] = f"{stat[k].get():.6f}"
|
|
if writer and gradient_step % log_interval == 0:
|
|
writer.add_scalar(
|
|
"train/" + k, stat[k].get(),
|
|
global_step=gradient_step)
|
|
t.set_postfix(**data)
|
|
# test
|
|
result = test_episode(policy, test_collector, test_fn, epoch,
|
|
episode_per_test, writer, gradient_step)
|
|
if best_epoch == -1 or best_reward < result["rew"]:
|
|
best_reward, best_reward_std = result["rew"], result["rew_std"]
|
|
best_epoch = epoch
|
|
if save_fn:
|
|
save_fn(policy)
|
|
if verbose:
|
|
print(f"Epoch #{epoch}: test_reward: {result['rew']:.6f} ± "
|
|
f"{result['rew_std']:.6f}, best_reward: {best_reward:.6f} ± "
|
|
f"{best_reward_std:.6f} in #{best_epoch}")
|
|
if stop_fn and stop_fn(best_reward):
|
|
break
|
|
return gather_info(start_time, None, test_collector,
|
|
best_reward, best_reward_std)
|