Closes #947 This removes all kwargs from all policy constructors. While doing that, I also improved several names and added a whole lot of TODOs. ## Functional changes: 1. Added possibility to pass None as `critic2` and `critic2_optim`. In fact, the default behavior then should cover the absolute majority of cases 2. Added a function called `clone_optimizer` as a temporary measure to support passing `critic2_optim=None` ## Breaking changes: 1. `action_space` is no longer optional. In fact, it already was non-optional, as there was a ValueError in BasePolicy.init. So now several examples were fixed to reflect that 2. `reward_normalization` removed from DDPG and children. It was never allowed to pass it as `True` there, an error would have been raised in `compute_n_step_reward`. Now I removed it from the interface 3. renamed `critic1` and similar to `critic`, in order to have uniform interfaces. Note that the `critic` in DDPG was optional for the sole reason that child classes used `critic1`. I removed this optionality (DDPG can't do anything with `critic=None`) 4. Several renamings of fields (mostly private to public, so backwards compatible) ## Additional changes: 1. Removed type and default declaration from docstring. This kind of duplication is really not necessary 2. Policy constructors are now only called using named arguments, not a fragile mixture of positional and named as before 5. Minor beautifications in typing and code 6. Generally shortened docstrings and made them uniform across all policies (hopefully) ## Comment: With these changes, several problems in tianshou's inheritance hierarchy become more apparent. I tried highlighting them for future work. --------- Co-authored-by: Dominik Jain <d.jain@appliedai.de>
		
			
				
	
	
		
			157 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			157 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import argparse
 | |
| import os
 | |
| import pprint
 | |
| 
 | |
| import gymnasium as gym
 | |
| import numpy as np
 | |
| import torch
 | |
| from torch.utils.tensorboard import SummaryWriter
 | |
| 
 | |
| from tianshou.data import Collector, VectorReplayBuffer
 | |
| from tianshou.env import DummyVectorEnv
 | |
| from tianshou.exploration import OUNoise
 | |
| from tianshou.policy import SACPolicy
 | |
| from tianshou.trainer import OffpolicyTrainer
 | |
| from tianshou.utils import TensorboardLogger
 | |
| from tianshou.utils.net.common import Net
 | |
| from tianshou.utils.net.continuous import ActorProb, Critic
 | |
| 
 | |
| 
 | |
| def get_args():
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser.add_argument("--task", type=str, default="MountainCarContinuous-v0")
 | |
|     parser.add_argument("--seed", type=int, default=1626)
 | |
|     parser.add_argument("--buffer-size", type=int, default=50000)
 | |
|     parser.add_argument("--actor-lr", type=float, default=3e-4)
 | |
|     parser.add_argument("--critic-lr", type=float, default=3e-4)
 | |
|     parser.add_argument("--alpha-lr", type=float, default=3e-4)
 | |
|     parser.add_argument("--noise_std", type=float, default=1.2)
 | |
|     parser.add_argument("--gamma", type=float, default=0.99)
 | |
|     parser.add_argument("--tau", type=float, default=0.005)
 | |
|     parser.add_argument("--auto_alpha", type=int, default=1)
 | |
|     parser.add_argument("--alpha", type=float, default=0.2)
 | |
|     parser.add_argument("--epoch", type=int, default=20)
 | |
|     parser.add_argument("--step-per-epoch", type=int, default=12000)
 | |
|     parser.add_argument("--step-per-collect", type=int, default=5)
 | |
|     parser.add_argument("--update-per-step", type=float, default=0.2)
 | |
|     parser.add_argument("--batch-size", type=int, default=128)
 | |
|     parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[128, 128])
 | |
|     parser.add_argument("--training-num", type=int, default=5)
 | |
|     parser.add_argument("--test-num", type=int, default=100)
 | |
|     parser.add_argument("--logdir", type=str, default="log")
 | |
|     parser.add_argument("--render", type=float, default=0.0)
 | |
|     parser.add_argument(
 | |
|         "--device",
 | |
|         type=str,
 | |
|         default="cuda" if torch.cuda.is_available() else "cpu",
 | |
|     )
 | |
|     return parser.parse_args()
 | |
| 
 | |
| 
 | |
| def test_sac(args=get_args()):
 | |
|     env = gym.make(args.task)
 | |
|     args.state_shape = env.observation_space.shape or env.observation_space.n
 | |
|     args.action_shape = env.action_space.shape or env.action_space.n
 | |
|     args.max_action = env.action_space.high[0]
 | |
|     # train_envs = gym.make(args.task)
 | |
|     train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)])
 | |
|     # test_envs = gym.make(args.task)
 | |
|     test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
 | |
|     # seed
 | |
|     np.random.seed(args.seed)
 | |
|     torch.manual_seed(args.seed)
 | |
|     train_envs.seed(args.seed)
 | |
|     test_envs.seed(args.seed)
 | |
|     # model
 | |
|     net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
 | |
|     actor = ActorProb(net, args.action_shape, device=args.device, unbounded=True).to(args.device)
 | |
|     actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
 | |
|     net_c1 = Net(
 | |
|         args.state_shape,
 | |
|         args.action_shape,
 | |
|         hidden_sizes=args.hidden_sizes,
 | |
|         concat=True,
 | |
|         device=args.device,
 | |
|     )
 | |
|     critic1 = Critic(net_c1, device=args.device).to(args.device)
 | |
|     critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
 | |
|     net_c2 = Net(
 | |
|         args.state_shape,
 | |
|         args.action_shape,
 | |
|         hidden_sizes=args.hidden_sizes,
 | |
|         concat=True,
 | |
|         device=args.device,
 | |
|     )
 | |
|     critic2 = Critic(net_c2, device=args.device).to(args.device)
 | |
|     critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
 | |
| 
 | |
|     if args.auto_alpha:
 | |
|         target_entropy = -np.prod(env.action_space.shape)
 | |
|         log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
 | |
|         alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
 | |
|         args.alpha = (target_entropy, log_alpha, alpha_optim)
 | |
| 
 | |
|     policy = SACPolicy(
 | |
|         actor=actor,
 | |
|         actor_optim=actor_optim,
 | |
|         critic=critic1,
 | |
|         critic_optim=critic1_optim,
 | |
|         critic2=critic2,
 | |
|         critic2_optim=critic2_optim,
 | |
|         tau=args.tau,
 | |
|         gamma=args.gamma,
 | |
|         alpha=args.alpha,
 | |
|         exploration_noise=OUNoise(0.0, args.noise_std),
 | |
|         action_space=env.action_space,
 | |
|     )
 | |
|     # collector
 | |
|     train_collector = Collector(
 | |
|         policy,
 | |
|         train_envs,
 | |
|         VectorReplayBuffer(args.buffer_size, len(train_envs)),
 | |
|         exploration_noise=True,
 | |
|     )
 | |
|     test_collector = Collector(policy, test_envs)
 | |
|     # train_collector.collect(n_step=args.buffer_size)
 | |
|     # log
 | |
|     log_path = os.path.join(args.logdir, args.task, "sac")
 | |
|     writer = SummaryWriter(log_path)
 | |
|     logger = TensorboardLogger(writer)
 | |
| 
 | |
|     def save_best_fn(policy):
 | |
|         torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
 | |
| 
 | |
|     def stop_fn(mean_rewards):
 | |
|         return mean_rewards >= env.spec.reward_threshold
 | |
| 
 | |
|     # trainer
 | |
|     result = OffpolicyTrainer(
 | |
|         policy=policy,
 | |
|         train_collector=train_collector,
 | |
|         test_collector=test_collector,
 | |
|         max_epoch=args.epoch,
 | |
|         step_per_epoch=args.step_per_epoch,
 | |
|         step_per_collect=args.step_per_collect,
 | |
|         episode_per_test=args.test_num,
 | |
|         batch_size=args.batch_size,
 | |
|         update_per_step=args.update_per_step,
 | |
|         stop_fn=stop_fn,
 | |
|         save_best_fn=save_best_fn,
 | |
|         logger=logger,
 | |
|     ).run()
 | |
| 
 | |
|     assert stop_fn(result["best_reward"])
 | |
|     if __name__ == "__main__":
 | |
|         pprint.pprint(result)
 | |
|         # Let's watch its performance!
 | |
|         policy.eval()
 | |
|         test_envs.seed(args.seed)
 | |
|         test_collector.reset()
 | |
|         result = test_collector.collect(n_episode=args.test_num, render=args.render)
 | |
|         rews, lens = result["rews"], result["lens"]
 | |
|         print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     test_sac()
 |