Closes #947 This removes all kwargs from all policy constructors. While doing that, I also improved several names and added a whole lot of TODOs. ## Functional changes: 1. Added possibility to pass None as `critic2` and `critic2_optim`. In fact, the default behavior then should cover the absolute majority of cases 2. Added a function called `clone_optimizer` as a temporary measure to support passing `critic2_optim=None` ## Breaking changes: 1. `action_space` is no longer optional. In fact, it already was non-optional, as there was a ValueError in BasePolicy.init. So now several examples were fixed to reflect that 2. `reward_normalization` removed from DDPG and children. It was never allowed to pass it as `True` there, an error would have been raised in `compute_n_step_reward`. Now I removed it from the interface 3. renamed `critic1` and similar to `critic`, in order to have uniform interfaces. Note that the `critic` in DDPG was optional for the sole reason that child classes used `critic1`. I removed this optionality (DDPG can't do anything with `critic=None`) 4. Several renamings of fields (mostly private to public, so backwards compatible) ## Additional changes: 1. Removed type and default declaration from docstring. This kind of duplication is really not necessary 2. Policy constructors are now only called using named arguments, not a fragile mixture of positional and named as before 5. Minor beautifications in typing and code 6. Generally shortened docstrings and made them uniform across all policies (hopefully) ## Comment: With these changes, several problems in tianshou's inheritance hierarchy become more apparent. I tried highlighting them for future work. --------- Co-authored-by: Dominik Jain <d.jain@appliedai.de>
204 lines
7.1 KiB
Python
204 lines
7.1 KiB
Python
import argparse
|
|
import datetime
|
|
import os
|
|
import pickle
|
|
import pprint
|
|
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
import torch
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.data import Collector, VectorReplayBuffer
|
|
from tianshou.env import DummyVectorEnv
|
|
from tianshou.exploration import GaussianNoise
|
|
from tianshou.policy import TD3BCPolicy
|
|
from tianshou.trainer import OfflineTrainer
|
|
from tianshou.utils import TensorboardLogger
|
|
from tianshou.utils.net.common import Net
|
|
from tianshou.utils.net.continuous import Actor, Critic
|
|
|
|
if __name__ == "__main__":
|
|
from gather_pendulum_data import expert_file_name, gather_data
|
|
else: # pytest
|
|
from test.offline.gather_pendulum_data import expert_file_name, gather_data
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--task", type=str, default="Pendulum-v1")
|
|
parser.add_argument("--reward-threshold", type=float, default=None)
|
|
parser.add_argument("--seed", type=int, default=0)
|
|
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64])
|
|
parser.add_argument("--actor-lr", type=float, default=1e-3)
|
|
parser.add_argument("--critic-lr", type=float, default=1e-3)
|
|
parser.add_argument("--epoch", type=int, default=5)
|
|
parser.add_argument("--step-per-epoch", type=int, default=500)
|
|
parser.add_argument("--n-step", type=int, default=3)
|
|
parser.add_argument("--batch-size", type=int, default=64)
|
|
parser.add_argument("--alpha", type=float, default=2.5)
|
|
parser.add_argument("--exploration-noise", type=float, default=0.1)
|
|
parser.add_argument("--policy-noise", type=float, default=0.2)
|
|
parser.add_argument("--noise-clip", type=float, default=0.5)
|
|
parser.add_argument("--update-actor-freq", type=int, default=2)
|
|
parser.add_argument("--tau", type=float, default=0.005)
|
|
parser.add_argument("--gamma", type=float, default=0.99)
|
|
|
|
parser.add_argument("--eval-freq", type=int, default=1)
|
|
parser.add_argument("--test-num", type=int, default=10)
|
|
parser.add_argument("--logdir", type=str, default="log")
|
|
parser.add_argument("--render", type=float, default=1 / 35)
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default="cuda" if torch.cuda.is_available() else "cpu",
|
|
)
|
|
parser.add_argument("--resume-path", type=str, default=None)
|
|
parser.add_argument(
|
|
"--watch",
|
|
default=False,
|
|
action="store_true",
|
|
help="watch the play of pre-trained policy only",
|
|
)
|
|
parser.add_argument("--load-buffer-name", type=str, default=expert_file_name())
|
|
return parser.parse_known_args()[0]
|
|
|
|
|
|
def test_td3_bc(args=get_args()):
|
|
if os.path.exists(args.load_buffer_name) and os.path.isfile(args.load_buffer_name):
|
|
if args.load_buffer_name.endswith(".hdf5"):
|
|
buffer = VectorReplayBuffer.load_hdf5(args.load_buffer_name)
|
|
else:
|
|
with open(args.load_buffer_name, "rb") as f:
|
|
buffer = pickle.load(f)
|
|
else:
|
|
buffer = gather_data()
|
|
env = gym.make(args.task)
|
|
args.state_shape = env.observation_space.shape or env.observation_space.n
|
|
args.action_shape = env.action_space.shape or env.action_space.n
|
|
args.max_action = env.action_space.high[0] # float
|
|
if args.reward_threshold is None:
|
|
# too low?
|
|
default_reward_threshold = {"Pendulum-v0": -1200, "Pendulum-v1": -1200}
|
|
args.reward_threshold = default_reward_threshold.get(args.task, env.spec.reward_threshold)
|
|
|
|
args.state_dim = args.state_shape[0]
|
|
args.action_dim = args.action_shape[0]
|
|
# test_envs = gym.make(args.task)
|
|
test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
test_envs.seed(args.seed)
|
|
|
|
# model
|
|
# actor network
|
|
net_a = Net(
|
|
args.state_shape,
|
|
hidden_sizes=args.hidden_sizes,
|
|
device=args.device,
|
|
)
|
|
actor = Actor(
|
|
net_a,
|
|
action_shape=args.action_shape,
|
|
max_action=args.max_action,
|
|
device=args.device,
|
|
).to(args.device)
|
|
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
|
|
|
|
# critic network
|
|
net_c1 = Net(
|
|
args.state_shape,
|
|
args.action_shape,
|
|
hidden_sizes=args.hidden_sizes,
|
|
concat=True,
|
|
device=args.device,
|
|
)
|
|
net_c2 = Net(
|
|
args.state_shape,
|
|
args.action_shape,
|
|
hidden_sizes=args.hidden_sizes,
|
|
concat=True,
|
|
device=args.device,
|
|
)
|
|
critic1 = Critic(net_c1, device=args.device).to(args.device)
|
|
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
|
|
critic2 = Critic(net_c2, device=args.device).to(args.device)
|
|
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
|
|
|
|
policy = TD3BCPolicy(
|
|
actor=actor,
|
|
actor_optim=actor_optim,
|
|
critic=critic1,
|
|
critic_optim=critic1_optim,
|
|
critic2=critic2,
|
|
critic2_optim=critic2_optim,
|
|
tau=args.tau,
|
|
gamma=args.gamma,
|
|
exploration_noise=GaussianNoise(sigma=args.exploration_noise),
|
|
policy_noise=args.policy_noise,
|
|
update_actor_freq=args.update_actor_freq,
|
|
noise_clip=args.noise_clip,
|
|
alpha=args.alpha,
|
|
estimation_step=args.n_step,
|
|
action_space=env.action_space,
|
|
)
|
|
|
|
# load a previous policy
|
|
if args.resume_path:
|
|
policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
|
|
print("Loaded agent from: ", args.resume_path)
|
|
|
|
# collector
|
|
# buffer has been gathered
|
|
# train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
|
|
test_collector = Collector(policy, test_envs)
|
|
# log
|
|
t0 = datetime.datetime.now().strftime("%m%d_%H%M%S")
|
|
log_file = f'seed_{args.seed}_{t0}-{args.task.replace("-", "_")}_td3_bc'
|
|
log_path = os.path.join(args.logdir, args.task, "td3_bc", log_file)
|
|
writer = SummaryWriter(log_path)
|
|
writer.add_text("args", str(args))
|
|
logger = TensorboardLogger(writer)
|
|
|
|
def save_best_fn(policy):
|
|
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
|
|
|
|
def stop_fn(mean_rewards):
|
|
return mean_rewards >= args.reward_threshold
|
|
|
|
# trainer
|
|
trainer = OfflineTrainer(
|
|
policy=policy,
|
|
buffer=buffer,
|
|
test_collector=test_collector,
|
|
max_epoch=args.epoch,
|
|
step_per_epoch=args.step_per_epoch,
|
|
episode_per_test=args.test_num,
|
|
batch_size=args.batch_size,
|
|
save_best_fn=save_best_fn,
|
|
stop_fn=stop_fn,
|
|
logger=logger,
|
|
)
|
|
|
|
for epoch, epoch_stat, info in trainer:
|
|
print(f"Epoch: {epoch}")
|
|
print(epoch_stat)
|
|
print(info)
|
|
|
|
assert stop_fn(info["best_reward"])
|
|
|
|
# Let's watch its performance!
|
|
if __name__ == "__main__":
|
|
pprint.pprint(info)
|
|
env = gym.make(args.task)
|
|
policy.eval()
|
|
collector = Collector(policy, env)
|
|
collector_result = collector.collect(n_episode=1, render=args.render)
|
|
rews, lens = collector_result["rews"], collector_result["lens"]
|
|
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_td3_bc()
|