158 lines
6.5 KiB
Python
Executable File
158 lines
6.5 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import os
|
|
import gym
|
|
import torch
|
|
import pprint
|
|
import datetime
|
|
import argparse
|
|
import numpy as np
|
|
from torch import nn
|
|
from torch.optim.lr_scheduler import LambdaLR
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
from torch.distributions import Independent, Normal
|
|
|
|
from tianshou.policy import PGPolicy
|
|
from tianshou.utils import BasicLogger
|
|
from tianshou.env import SubprocVectorEnv
|
|
from tianshou.utils.net.common import Net
|
|
from tianshou.trainer import onpolicy_trainer
|
|
from tianshou.utils.net.continuous import ActorProb
|
|
from tianshou.data import Collector, ReplayBuffer, VectorReplayBuffer
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--task', type=str, default='HalfCheetah-v3')
|
|
parser.add_argument('--seed', type=int, default=0)
|
|
parser.add_argument('--buffer-size', type=int, default=4096)
|
|
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64])
|
|
parser.add_argument('--lr', type=float, default=1e-3)
|
|
parser.add_argument('--gamma', type=float, default=0.99)
|
|
parser.add_argument('--epoch', type=int, default=100)
|
|
parser.add_argument('--step-per-epoch', type=int, default=30000)
|
|
parser.add_argument('--step-per-collect', type=int, default=2048)
|
|
parser.add_argument('--repeat-per-collect', type=int, default=1)
|
|
# batch-size >> step-per-collect means calculating all data in one singe forward.
|
|
parser.add_argument('--batch-size', type=int, default=99999)
|
|
parser.add_argument('--training-num', type=int, default=64)
|
|
parser.add_argument('--test-num', type=int, default=10)
|
|
# reinforce special
|
|
parser.add_argument('--rew-norm', type=int, default=True)
|
|
# "clip" option also works well.
|
|
parser.add_argument('--action-bound-method', type=str, default="tanh")
|
|
parser.add_argument('--lr-decay', type=int, default=True)
|
|
parser.add_argument('--logdir', type=str, default='log')
|
|
parser.add_argument('--render', type=float, default=0.)
|
|
parser.add_argument(
|
|
'--device', type=str,
|
|
default='cuda' if torch.cuda.is_available() else 'cpu')
|
|
parser.add_argument('--resume-path', type=str, default=None)
|
|
parser.add_argument('--watch', default=False, action='store_true',
|
|
help='watch the play of pre-trained policy only')
|
|
return parser.parse_args()
|
|
|
|
|
|
def test_reinforce(args=get_args()):
|
|
env = gym.make(args.task)
|
|
args.state_shape = env.observation_space.shape or env.observation_space.n
|
|
args.action_shape = env.action_space.shape or env.action_space.n
|
|
args.max_action = env.action_space.high[0]
|
|
print("Observations shape:", args.state_shape)
|
|
print("Actions shape:", args.action_shape)
|
|
print("Action range:", np.min(env.action_space.low),
|
|
np.max(env.action_space.high))
|
|
# train_envs = gym.make(args.task)
|
|
train_envs = SubprocVectorEnv(
|
|
[lambda: gym.make(args.task) for _ in range(args.training_num)],
|
|
norm_obs=True)
|
|
# test_envs = gym.make(args.task)
|
|
test_envs = SubprocVectorEnv(
|
|
[lambda: gym.make(args.task) for _ in range(args.test_num)],
|
|
norm_obs=True, obs_rms=train_envs.obs_rms, update_obs_rms=False)
|
|
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
train_envs.seed(args.seed)
|
|
test_envs.seed(args.seed)
|
|
# model
|
|
net_a = Net(args.state_shape, hidden_sizes=args.hidden_sizes,
|
|
activation=nn.Tanh, device=args.device)
|
|
actor = ActorProb(net_a, args.action_shape, max_action=args.max_action,
|
|
unbounded=True, device=args.device).to(args.device)
|
|
torch.nn.init.constant_(actor.sigma_param, -0.5)
|
|
for m in actor.modules():
|
|
if isinstance(m, torch.nn.Linear):
|
|
# orthogonal initialization
|
|
torch.nn.init.orthogonal_(m.weight, gain=np.sqrt(2))
|
|
torch.nn.init.zeros_(m.bias)
|
|
# do last policy layer scaling, this will make initial actions have (close to)
|
|
# 0 mean and std, and will help boost performances,
|
|
# see https://arxiv.org/abs/2006.05990, Fig.24 for details
|
|
for m in actor.mu.modules():
|
|
if isinstance(m, torch.nn.Linear):
|
|
torch.nn.init.zeros_(m.bias)
|
|
m.weight.data.copy_(0.01 * m.weight.data)
|
|
|
|
optim = torch.optim.Adam(actor.parameters(), lr=args.lr)
|
|
lr_scheduler = None
|
|
if args.lr_decay:
|
|
# decay learning rate to 0 linearly
|
|
max_update_num = np.ceil(
|
|
args.step_per_epoch / args.step_per_collect) * args.epoch
|
|
|
|
lr_scheduler = LambdaLR(
|
|
optim, lr_lambda=lambda epoch: 1 - epoch / max_update_num)
|
|
|
|
def dist(*logits):
|
|
return Independent(Normal(*logits), 1)
|
|
|
|
policy = PGPolicy(actor, optim, dist, discount_factor=args.gamma,
|
|
reward_normalization=args.rew_norm, action_scaling=True,
|
|
action_bound_method=args.action_bound_method,
|
|
lr_scheduler=lr_scheduler, action_space=env.action_space)
|
|
|
|
# load a previous policy
|
|
if args.resume_path:
|
|
policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
|
|
print("Loaded agent from: ", args.resume_path)
|
|
|
|
# collector
|
|
if args.training_num > 1:
|
|
buffer = VectorReplayBuffer(args.buffer_size, len(train_envs))
|
|
else:
|
|
buffer = ReplayBuffer(args.buffer_size)
|
|
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
|
|
test_collector = Collector(policy, test_envs)
|
|
# log
|
|
t0 = datetime.datetime.now().strftime("%m%d_%H%M%S")
|
|
log_file = f'seed_{args.seed}_{t0}-{args.task.replace("-", "_")}_reinforce'
|
|
log_path = os.path.join(args.logdir, args.task, 'reinforce', log_file)
|
|
writer = SummaryWriter(log_path)
|
|
writer.add_text("args", str(args))
|
|
logger = BasicLogger(writer, update_interval=10, train_interval=100)
|
|
|
|
def save_fn(policy):
|
|
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
|
|
|
|
if not args.watch:
|
|
# trainer
|
|
result = onpolicy_trainer(
|
|
policy, train_collector, test_collector, args.epoch, args.step_per_epoch,
|
|
args.repeat_per_collect, args.test_num, args.batch_size,
|
|
step_per_collect=args.step_per_collect, save_fn=save_fn, logger=logger,
|
|
test_in_train=False)
|
|
pprint.pprint(result)
|
|
|
|
# Let's watch its performance!
|
|
policy.eval()
|
|
test_envs.seed(args.seed)
|
|
test_collector.reset()
|
|
result = test_collector.collect(n_episode=args.test_num, render=args.render)
|
|
print(f'Final reward: {result["rews"].mean()}, length: {result["lens"].mean()}')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_reinforce()
|