2021-04-19 17:05:06 +08:00

214 lines
9.3 KiB
Python

import torch
import warnings
import numpy as np
from torch import nn
import torch.nn.functional as F
from torch.distributions import kl_divergence
from typing import Any, Dict, List, Type, Callable
from tianshou.policy import A2CPolicy
from tianshou.data import Batch, ReplayBuffer
def _conjugate_gradients(
Avp: Callable[[torch.Tensor], torch.Tensor],
b: torch.Tensor,
nsteps: int = 10,
residual_tol: float = 1e-10
) -> torch.Tensor:
x = torch.zeros_like(b)
r, p = b.clone(), b.clone()
# Note: should be 'r, p = b - A(x)', but for x=0, A(x)=0.
# Change if doing warm start.
rdotr = r.dot(r)
for i in range(nsteps):
z = Avp(p)
alpha = rdotr / p.dot(z)
x += alpha * p
r -= alpha * z
new_rdotr = r.dot(r)
if new_rdotr < residual_tol:
break
p = r + new_rdotr / rdotr * p
rdotr = new_rdotr
return x
def _get_flat_grad(y: torch.Tensor, model: nn.Module, **kwargs: Any) -> torch.Tensor:
grads = torch.autograd.grad(y, model.parameters(), **kwargs) # type: ignore
return torch.cat([grad.reshape(-1) for grad in grads])
def _set_from_flat_params(model: nn.Module, flat_params: torch.Tensor) -> nn.Module:
prev_ind = 0
for param in model.parameters():
flat_size = int(np.prod(list(param.size())))
param.data.copy_(
flat_params[prev_ind:prev_ind + flat_size].view(param.size()))
prev_ind += flat_size
return model
class TRPOPolicy(A2CPolicy):
"""Implementation of Trust Region Policy Optimization. arXiv:1502.05477.
:param torch.nn.Module actor: the actor network following the rules in
:class:`~tianshou.policy.BasePolicy`. (s -> logits)
:param torch.nn.Module critic: the critic network. (s -> V(s))
:param torch.optim.Optimizer optim: the optimizer for actor and critic network.
:param dist_fn: distribution class for computing the action.
:type dist_fn: Type[torch.distributions.Distribution]
:param bool advantage_normalization: whether to do per mini-batch advantage
normalization. Default to True.
:param int optim_critic_iters: Number of times to optimize critic network per
update. Default to 5.
:param int max_kl: max kl-divergence used to constrain each actor network update.
Default to 0.01.
:param float backtrack_coeff: Coefficient to be multiplied by step size when
constraints are not met. Default to 0.8.
:param int max_backtracks: Max number of backtracking times in linesearch. Default
to 10.
:param float gae_lambda: in [0, 1], param for Generalized Advantage Estimation.
Default to 0.95.
:param bool reward_normalization: normalize estimated values to have std close to
1. Default to False.
:param int max_batchsize: the maximum size of the batch when computing GAE,
depends on the size of available memory and the memory cost of the
model; should be as large as possible within the memory constraint.
Default to 256.
:param bool action_scaling: whether to map actions from range [-1, 1] to range
[action_spaces.low, action_spaces.high]. Default to True.
:param str action_bound_method: method to bound action to range [-1, 1], can be
either "clip" (for simply clipping the action), "tanh" (for applying tanh
squashing) for now, or empty string for no bounding. Default to "clip".
:param Optional[gym.Space] action_space: env's action space, mandatory if you want
to use option "action_scaling" or "action_bound_method". Default to None.
:param lr_scheduler: a learning rate scheduler that adjusts the learning rate in
optimizer in each policy.update(). Default to None (no lr_scheduler).
"""
def __init__(
self,
actor: torch.nn.Module,
critic: torch.nn.Module,
optim: torch.optim.Optimizer,
dist_fn: Type[torch.distributions.Distribution],
advantage_normalization: bool = True,
optim_critic_iters: int = 5,
max_kl: float = 0.01,
backtrack_coeff: float = 0.8,
max_backtracks: int = 10,
**kwargs: Any,
) -> None:
super().__init__(actor, critic, optim, dist_fn, **kwargs)
del self._weight_vf, self._weight_ent, self._grad_norm
self._norm_adv = advantage_normalization
self._optim_critic_iters = optim_critic_iters
self._max_backtracks = max_backtracks
self._delta = max_kl
self._backtrack_coeff = backtrack_coeff
# adjusts Hessian-vector product calculation for numerical stability
self.__damping = 0.1
def process_fn(
self, batch: Batch, buffer: ReplayBuffer, indice: np.ndarray
) -> Batch:
batch = super().process_fn(batch, buffer, indice)
old_log_prob = []
with torch.no_grad():
for b in batch.split(self._batch, shuffle=False, merge_last=True):
old_log_prob.append(self(b).dist.log_prob(b.act))
batch.logp_old = torch.cat(old_log_prob, dim=0)
if self._norm_adv:
batch.adv = (batch.adv - batch.adv.mean()) / batch.adv.std()
return batch
def learn( # type: ignore
self, batch: Batch, batch_size: int, repeat: int, **kwargs: Any
) -> Dict[str, List[float]]:
actor_losses, vf_losses, step_sizes, kls = [], [], [], []
for step in range(repeat):
for b in batch.split(batch_size, merge_last=True):
# optimize actor
# direction: calculate villia gradient
dist = self(b).dist # TODO could come from batch
ratio = (dist.log_prob(b.act) - b.logp_old).exp().float()
ratio = ratio.reshape(ratio.size(0), -1).transpose(0, 1)
actor_loss = -(ratio * b.adv).mean()
flat_grads = _get_flat_grad(
actor_loss, self.actor, retain_graph=True).detach()
# direction: calculate natural gradient
with torch.no_grad():
old_dist = self(b).dist
kl = kl_divergence(old_dist, dist).mean()
# calculate first order gradient of kl with respect to theta
flat_kl_grad = _get_flat_grad(kl, self.actor, create_graph=True)
def MVP(v: torch.Tensor) -> torch.Tensor: # matrix vector product
# caculate second order gradient of kl with respect to theta
kl_v = (flat_kl_grad * v).sum()
flat_kl_grad_grad = _get_flat_grad(
kl_v, self.actor, retain_graph=True).detach()
return flat_kl_grad_grad + v * self.__damping
search_direction = -_conjugate_gradients(MVP, flat_grads, nsteps=10)
# stepsize: calculate max stepsize constrained by kl bound
step_size = torch.sqrt(2 * self._delta / (
search_direction * MVP(search_direction)).sum(0, keepdim=True))
# stepsize: linesearch stepsize
with torch.no_grad():
flat_params = torch.cat([param.data.view(-1)
for param in self.actor.parameters()])
for i in range(self._max_backtracks):
new_flat_params = flat_params + step_size * search_direction
_set_from_flat_params(self.actor, new_flat_params)
# calculate kl and if in bound, loss actually down
new_dist = self(b).dist
new_dratio = (
new_dist.log_prob(b.act) - b.logp_old).exp().float()
new_dratio = new_dratio.reshape(
new_dratio.size(0), -1).transpose(0, 1)
new_actor_loss = -(new_dratio * b.adv).mean()
kl = kl_divergence(old_dist, new_dist).mean()
if kl < self._delta and new_actor_loss < actor_loss:
if i > 0:
warnings.warn(f"Backtracking to step {i}.")
break
elif i < self._max_backtracks - 1:
step_size = step_size * self._backtrack_coeff
else:
_set_from_flat_params(self.actor, new_flat_params)
step_size = torch.tensor([0.0])
warnings.warn("Line search failed! It seems hyperparamters"
" are poor and need to be changed.")
# optimize citirc
for _ in range(self._optim_critic_iters):
value = self.critic(b.obs).flatten()
vf_loss = F.mse_loss(b.returns, value)
self.optim.zero_grad()
vf_loss.backward()
self.optim.step()
actor_losses.append(actor_loss.item())
vf_losses.append(vf_loss.item())
step_sizes.append(step_size.item())
kls.append(kl.item())
# update learning rate if lr_scheduler is given
if self.lr_scheduler is not None:
self.lr_scheduler.step()
return {
"loss/actor": actor_losses,
"loss/vf": vf_losses,
"step_size": step_sizes,
"kl": kls,
}