Tianshou/examples/mujoco/mujoco_sac.py
ChenDRAG a633a6a028
update utils.network (#275)
This is the first commit of 6 commits mentioned in #274, which features

1. Refactor of `Class Net` to support any form of MLP.
2. Enable type check in utils.network.
3. Relative change in docs/test/examples.
4. Move atari-related network to examples/atari/atari_network.py

Co-authored-by: Trinkle23897 <trinkle23897@gmail.com>
2021-01-20 16:54:13 +08:00

151 lines
6.1 KiB
Python

import os
import gym
import torch
import pprint
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.policy import SACPolicy
from tianshou.env import SubprocVectorEnv
from tianshou.utils.net.common import Net
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.utils.net.continuous import ActorProb, Critic
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='Ant-v3')
parser.add_argument('--seed', type=int, default=1626)
parser.add_argument('--buffer-size', type=int, default=1000000)
parser.add_argument('--actor-lr', type=float, default=3e-4)
parser.add_argument('--critic-lr', type=float, default=3e-4)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--tau', type=float, default=0.005)
parser.add_argument('--alpha', type=float, default=0.2)
parser.add_argument('--auto-alpha', default=False, action='store_true')
parser.add_argument('--alpha-lr', type=float, default=3e-4)
parser.add_argument('--n-step', type=int, default=2)
parser.add_argument('--epoch', type=int, default=100)
parser.add_argument('--step-per-epoch', type=int, default=10000)
parser.add_argument('--collect-per-step', type=int, default=4)
parser.add_argument('--update-per-step', type=int, default=1)
parser.add_argument('--pre-collect-step', type=int, default=10000)
parser.add_argument('--batch-size', type=int, default=256)
parser.add_argument('--hidden-sizes', type=int,
nargs='*', default=[128, 128])
parser.add_argument('--training-num', type=int, default=16)
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument('--log-interval', type=int, default=1000)
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
parser.add_argument('--resume-path', type=str, default=None)
parser.add_argument('--watch', default=False, action='store_true',
help='watch the play of pre-trained policy only')
return parser.parse_args()
def test_sac(args=get_args()):
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
print("Action range:", np.min(env.action_space.low),
np.max(env.action_space.high))
# train_envs = gym.make(args.task)
train_envs = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
test_envs = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes,
device=args.device)
actor = ActorProb(
net, args.action_shape, max_action=args.max_action,
device=args.device, unbounded=True, conditioned_sigma=True
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
net_c1 = Net(args.state_shape, args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True, device=args.device)
critic1 = Critic(net_c1, device=args.device).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
net_c2 = Net(args.state_shape, args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True, device=args.device)
critic2 = Critic(net_c2, device=args.device).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
if args.auto_alpha:
target_entropy = -np.prod(env.action_space.shape)
log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
args.alpha = (target_entropy, log_alpha, alpha_optim)
policy = SACPolicy(
actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,
action_range=[env.action_space.low[0], env.action_space.high[0]],
tau=args.tau, gamma=args.gamma, alpha=args.alpha,
estimation_step=args.n_step)
# load a previous policy
if args.resume_path:
policy.load_state_dict(torch.load(
args.resume_path, map_location=args.device
))
print("Loaded agent from: ", args.resume_path)
# collector
train_collector = Collector(
policy, train_envs, ReplayBuffer(args.buffer_size))
test_collector = Collector(policy, test_envs)
# log
log_path = os.path.join(args.logdir, args.task, 'sac')
writer = SummaryWriter(log_path)
def watch():
# watch agent's performance
print("Testing agent ...")
policy.eval()
test_envs.seed(args.seed)
test_collector.reset()
result = test_collector.collect(n_episode=[1] * args.test_num,
render=args.render)
pprint.pprint(result)
def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
def stop_fn(mean_rewards):
return False
if args.watch:
watch()
exit(0)
# trainer
train_collector.collect(n_step=args.pre_collect_step, random=True)
result = offpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.collect_per_step, args.test_num,
args.batch_size, args.update_per_step,
stop_fn=stop_fn, save_fn=save_fn, writer=writer,
log_interval=args.log_interval)
pprint.pprint(result)
watch()
if __name__ == '__main__':
test_sac()