Tianshou/examples/mujoco/runnable/halfcheetahBullet_v0_sac.py
ChenDRAG a633a6a028
update utils.network (#275)
This is the first commit of 6 commits mentioned in #274, which features

1. Refactor of `Class Net` to support any form of MLP.
2. Enable type check in utils.network.
3. Relative change in docs/test/examples.
4. Move atari-related network to examples/atari/atari_network.py

Co-authored-by: Trinkle23897 <trinkle23897@gmail.com>
2021-01-20 16:54:13 +08:00

116 lines
4.9 KiB
Python

import os
import gym
import torch
import pprint
import argparse
import numpy as np
import pybullet_envs
from torch.utils.tensorboard import SummaryWriter
from tianshou.policy import SACPolicy
from tianshou.utils.net.common import Net
from tianshou.env import SubprocVectorEnv
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.utils.net.continuous import ActorProb, Critic
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='HalfCheetahBulletEnv-v0')
parser.add_argument('--run-id', type=str, default='test')
parser.add_argument('--seed', type=int, default=1626)
parser.add_argument('--buffer-size', type=int, default=20000)
parser.add_argument('--actor-lr', type=float, default=3e-4)
parser.add_argument('--critic-lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--tau', type=float, default=0.005)
parser.add_argument('--alpha', type=float, default=0.2)
parser.add_argument('--epoch', type=int, default=200)
parser.add_argument('--step-per-epoch', type=int, default=1000)
parser.add_argument('--collect-per-step', type=int, default=10)
parser.add_argument('--batch-size', type=int, default=128)
parser.add_argument('--hidden-sizes', type=int,
nargs='*', default=[128, 128])
parser.add_argument('--training-num', type=int, default=8)
parser.add_argument('--test-num', type=int, default=4)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--log-interval', type=int, default=100)
parser.add_argument('--render', type=float, default=0.)
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
return parser.parse_args()
def test_sac(args=get_args()):
torch.set_num_threads(1)
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
# you can also use tianshou.env.SubprocVectorEnv
# train_envs = gym.make(args.task)
train_envs = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
test_envs = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes,
device=args.device)
actor = ActorProb(net, args.action_shape, max_action=args.max_action,
device=args.device, unbounded=True).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
net = Net(args.state_shape, args.action_shape,
hidden_sizes=args.hidden_sizes, concat=True, device=args.device)
critic1 = Critic(net, device=args.device).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
net = Net(args.state_shape, args.action_shape,
hidden_sizes=args.hidden_sizes, concat=True, device=args.device)
critic2 = Critic(net, device=args.device).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
policy = SACPolicy(
actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,
action_range=[env.action_space.low[0], env.action_space.high[0]],
tau=args.tau, gamma=args.gamma, alpha=args.alpha,
reward_normalization=True, ignore_done=True)
# collector
train_collector = Collector(
policy, train_envs, ReplayBuffer(args.buffer_size))
test_collector = Collector(policy, test_envs)
# train_collector.collect(n_step=args.buffer_size)
# log
log_path = os.path.join(args.logdir, args.task, 'sac', args.run_id)
writer = SummaryWriter(log_path)
def stop_fn(mean_rewards):
return mean_rewards >= env.spec.reward_threshold
# trainer
result = offpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.collect_per_step, args.test_num,
args.batch_size, stop_fn=stop_fn,
writer=writer, log_interval=args.log_interval)
assert stop_fn(result['best_reward'])
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
policy.eval()
test_envs.seed(args.seed)
test_collector.reset()
result = test_collector.collect(n_episode=[1] * args.test_num,
render=args.render)
print(f'Final reward: {result["rew"]}, length: {result["len"]}')
if __name__ == '__main__':
__all__ = ('pybullet_envs',) # Avoid F401 error :)
test_sac()