This is the first commit of 6 commits mentioned in #274, which features 1. Refactor of `Class Net` to support any form of MLP. 2. Enable type check in utils.network. 3. Relative change in docs/test/examples. 4. Move atari-related network to examples/atari/atari_network.py Co-authored-by: Trinkle23897 <trinkle23897@gmail.com>
102 lines
3.5 KiB
Python
102 lines
3.5 KiB
Python
import torch
|
|
import numpy as np
|
|
|
|
from tianshou.utils import MovAvg
|
|
from tianshou.utils import SummaryWriter
|
|
from tianshou.utils.net.common import MLP, Net
|
|
from tianshou.exploration import GaussianNoise, OUNoise
|
|
from tianshou.utils.net.continuous import RecurrentActorProb, RecurrentCritic
|
|
|
|
|
|
def test_noise():
|
|
noise = GaussianNoise()
|
|
size = (3, 4, 5)
|
|
assert np.allclose(noise(size).shape, size)
|
|
noise = OUNoise()
|
|
noise.reset()
|
|
assert np.allclose(noise(size).shape, size)
|
|
|
|
|
|
def test_moving_average():
|
|
stat = MovAvg(10)
|
|
assert np.allclose(stat.get(), 0)
|
|
assert np.allclose(stat.mean(), 0)
|
|
assert np.allclose(stat.std() ** 2, 0)
|
|
stat.add(torch.tensor([1]))
|
|
stat.add(np.array([2]))
|
|
stat.add([3, 4])
|
|
stat.add(5.)
|
|
assert np.allclose(stat.get(), 3)
|
|
assert np.allclose(stat.mean(), 3)
|
|
assert np.allclose(stat.std() ** 2, 2)
|
|
|
|
|
|
def test_net():
|
|
# here test the networks that does not appear in the other script
|
|
bsz = 64
|
|
# MLP
|
|
data = torch.rand([bsz, 3])
|
|
mlp = MLP(3, 6, hidden_sizes=[128])
|
|
assert list(mlp(data).shape) == [bsz, 6]
|
|
# output == 0 and len(hidden_sizes) == 0 means identity model
|
|
mlp = MLP(6, 0)
|
|
assert data.shape == mlp(data).shape
|
|
# common net
|
|
state_shape = (10, 2)
|
|
action_shape = (5, )
|
|
data = torch.rand([bsz, *state_shape])
|
|
expect_output_shape = [bsz, *action_shape]
|
|
net = Net(state_shape, action_shape, hidden_sizes=[128, 128],
|
|
norm_layer=torch.nn.LayerNorm, activation=None)
|
|
assert list(net(data)[0].shape) == expect_output_shape
|
|
assert str(net).count("LayerNorm") == 2
|
|
assert str(net).count("ReLU") == 0
|
|
Q_param = V_param = {"hidden_sizes": [128, 128]}
|
|
net = Net(state_shape, action_shape, hidden_sizes=[128, 128],
|
|
dueling_param=(Q_param, V_param))
|
|
assert list(net(data)[0].shape) == expect_output_shape
|
|
# concat
|
|
net = Net(state_shape, action_shape, hidden_sizes=[128],
|
|
concat=True)
|
|
data = torch.rand([bsz, np.prod(state_shape) + np.prod(action_shape)])
|
|
expect_output_shape = [bsz, 128]
|
|
assert list(net(data)[0].shape) == expect_output_shape
|
|
net = Net(state_shape, action_shape, hidden_sizes=[128],
|
|
concat=True, dueling_param=(Q_param, V_param))
|
|
assert list(net(data)[0].shape) == expect_output_shape
|
|
# recurrent actor/critic
|
|
data = torch.rand([bsz, *state_shape]).flatten(1)
|
|
expect_output_shape = [bsz, *action_shape]
|
|
net = RecurrentActorProb(3, state_shape, action_shape)
|
|
mu, sigma = net(data)[0]
|
|
assert mu.shape == sigma.shape
|
|
assert list(mu.shape) == [bsz, 5]
|
|
net = RecurrentCritic(3, state_shape, action_shape)
|
|
data = torch.rand([bsz, 8, np.prod(state_shape)])
|
|
act = torch.rand(expect_output_shape)
|
|
assert list(net(data, act).shape) == [bsz, 1]
|
|
|
|
|
|
def test_summary_writer():
|
|
# get first instance by key of `default` or your own key
|
|
writer1 = SummaryWriter.get_instance(
|
|
key="first", log_dir="log/test_sw/first")
|
|
assert writer1.log_dir == "log/test_sw/first"
|
|
writer2 = SummaryWriter.get_instance()
|
|
assert writer1 is writer2
|
|
# create new instance by specify a new key
|
|
writer3 = SummaryWriter.get_instance(
|
|
key="second", log_dir="log/test_sw/second")
|
|
assert writer3.log_dir == "log/test_sw/second"
|
|
writer4 = SummaryWriter.get_instance(key="second")
|
|
assert writer3 is writer4
|
|
assert writer1 is not writer3
|
|
assert writer1.log_dir != writer4.log_dir
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_noise()
|
|
test_moving_average()
|
|
test_net()
|
|
test_summary_writer()
|