rocknamx bf39b9ef7d
clarify updating state (#224)
Add an indicator(i.e. `self.learning`) of learning will be convenient for distinguishing state of policy.
Meanwhile, the state of `self.training` will be undisputed in the training stage.
Related issue: #211 

Others:
- fix a bug in DDQN: target_q could not be sampled from np.random.rand
- fix a bug in DQN atari net: it should add a ReLU before the last layer
- fix a bug in collector timing

Co-authored-by: n+e <463003665@qq.com>
2020-09-22 16:28:46 +08:00

170 lines
6.5 KiB
Python

import torch
import numpy as np
from copy import deepcopy
from typing import Any, Dict, Tuple, Union, Optional
from tianshou.policy import BasePolicy
from tianshou.exploration import BaseNoise, GaussianNoise
from tianshou.data import Batch, ReplayBuffer, to_torch_as
class DDPGPolicy(BasePolicy):
"""Implementation of Deep Deterministic Policy Gradient. arXiv:1509.02971.
:param torch.nn.Module actor: the actor network following the rules in
:class:`~tianshou.policy.BasePolicy`. (s -> logits)
:param torch.optim.Optimizer actor_optim: the optimizer for actor network.
:param torch.nn.Module critic: the critic network. (s, a -> Q(s, a))
:param torch.optim.Optimizer critic_optim: the optimizer for critic
network.
:param action_range: the action range (minimum, maximum).
:type action_range: Tuple[float, float]
:param float tau: param for soft update of the target network, defaults to
0.005.
:param float gamma: discount factor, in [0, 1], defaults to 0.99.
:param BaseNoise exploration_noise: the exploration noise,
add to the action, defaults to ``GaussianNoise(sigma=0.1)``.
:param bool reward_normalization: normalize the reward to Normal(0, 1),
defaults to False.
:param bool ignore_done: ignore the done flag while training the policy,
defaults to False.
:param int estimation_step: greater than 1, the number of steps to look
ahead.
.. seealso::
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
explanation.
"""
def __init__(
self,
actor: Optional[torch.nn.Module],
actor_optim: Optional[torch.optim.Optimizer],
critic: Optional[torch.nn.Module],
critic_optim: Optional[torch.optim.Optimizer],
action_range: Tuple[float, float],
tau: float = 0.005,
gamma: float = 0.99,
exploration_noise: Optional[BaseNoise] = GaussianNoise(sigma=0.1),
reward_normalization: bool = False,
ignore_done: bool = False,
estimation_step: int = 1,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
if actor is not None and actor_optim is not None:
self.actor: torch.nn.Module = actor
self.actor_old = deepcopy(actor)
self.actor_old.eval()
self.actor_optim: torch.optim.Optimizer = actor_optim
if critic is not None and critic_optim is not None:
self.critic: torch.nn.Module = critic
self.critic_old = deepcopy(critic)
self.critic_old.eval()
self.critic_optim: torch.optim.Optimizer = critic_optim
assert 0.0 <= tau <= 1.0, "tau should be in [0, 1]"
self._tau = tau
assert 0.0 <= gamma <= 1.0, "gamma should be in [0, 1]"
self._gamma = gamma
self._noise = exploration_noise
self._range = action_range
self._action_bias = (action_range[0] + action_range[1]) / 2.0
self._action_scale = (action_range[1] - action_range[0]) / 2.0
# it is only a little difference to use GaussianNoise
# self.noise = OUNoise()
self._rm_done = ignore_done
self._rew_norm = reward_normalization
assert estimation_step > 0, "estimation_step should be greater than 0"
self._n_step = estimation_step
def set_exp_noise(self, noise: Optional[BaseNoise]) -> None:
"""Set the exploration noise."""
self._noise = noise
def train(self, mode: bool = True) -> "DDPGPolicy":
"""Set the module in training mode, except for the target network."""
self.training = mode
self.actor.train(mode)
self.critic.train(mode)
return self
def sync_weight(self) -> None:
"""Soft-update the weight for the target network."""
for o, n in zip(self.actor_old.parameters(), self.actor.parameters()):
o.data.copy_(o.data * (1.0 - self._tau) + n.data * self._tau)
for o, n in zip(
self.critic_old.parameters(), self.critic.parameters()
):
o.data.copy_(o.data * (1.0 - self._tau) + n.data * self._tau)
def _target_q(
self, buffer: ReplayBuffer, indice: np.ndarray
) -> torch.Tensor:
batch = buffer[indice] # batch.obs_next: s_{t+n}
with torch.no_grad():
target_q = self.critic_old(
batch.obs_next,
self(batch, model='actor_old', input='obs_next').act)
return target_q
def process_fn(
self, batch: Batch, buffer: ReplayBuffer, indice: np.ndarray
) -> Batch:
if self._rm_done:
batch.done = batch.done * 0.0
batch = self.compute_nstep_return(
batch, buffer, indice, self._target_q,
self._gamma, self._n_step, self._rew_norm)
return batch
def forward(
self,
batch: Batch,
state: Optional[Union[dict, Batch, np.ndarray]] = None,
model: str = "actor",
input: str = "obs",
**kwargs: Any,
) -> Batch:
"""Compute action over the given batch data.
:return: A :class:`~tianshou.data.Batch` which has 2 keys:
* ``act`` the action.
* ``state`` the hidden state.
.. seealso::
Please refer to :meth:`~tianshou.policy.BasePolicy.forward` for
more detailed explanation.
"""
model = getattr(self, model)
obs = batch[input]
actions, h = model(obs, state=state, info=batch.info)
actions += self._action_bias
if self._noise and not self.updating:
actions += to_torch_as(self._noise(actions.shape), actions)
actions = actions.clamp(self._range[0], self._range[1])
return Batch(act=actions, state=h)
def learn(self, batch: Batch, **kwargs: Any) -> Dict[str, float]:
weight = batch.pop("weight", 1.0)
current_q = self.critic(batch.obs, batch.act).flatten()
target_q = batch.returns.flatten()
td = current_q - target_q
critic_loss = (td.pow(2) * weight).mean()
batch.weight = td # prio-buffer
self.critic_optim.zero_grad()
critic_loss.backward()
self.critic_optim.step()
action = self(batch).act
actor_loss = -self.critic(batch.obs, action).mean()
self.actor_optim.zero_grad()
actor_loss.backward()
self.actor_optim.step()
self.sync_weight()
return {
"loss/actor": actor_loss.item(),
"loss/critic": critic_loss.item(),
}