ChenDRAG a633a6a028
update utils.network (#275)
This is the first commit of 6 commits mentioned in #274, which features

1. Refactor of `Class Net` to support any form of MLP.
2. Enable type check in utils.network.
3. Relative change in docs/test/examples.
4. Move atari-related network to examples/atari/atari_network.py

Co-authored-by: Trinkle23897 <trinkle23897@gmail.com>
2021-01-20 16:54:13 +08:00

259 lines
10 KiB
Python

import torch
import numpy as np
from torch import nn
from typing import Any, Dict, List, Type, Tuple, Union, Optional, Sequence
ModuleType = Type[nn.Module]
def miniblock(
input_size: int,
output_size: int = 0,
norm_layer: Optional[ModuleType] = None,
activation: Optional[ModuleType] = None,
) -> List[nn.Module]:
"""Construct a miniblock with given input/output-size, norm layer and \
activation."""
layers: List[nn.Module] = [nn.Linear(input_size, output_size)]
if norm_layer is not None:
layers += [norm_layer(output_size)] # type: ignore
if activation is not None:
layers += [activation()]
return layers
class MLP(nn.Module):
"""Simple MLP backbone.
Create a MLP of size input_dim * hidden_sizes[0] * hidden_sizes[1] * ...
* hidden_sizes[-1] * output_dim
:param int input_dim: dimension of the input vector.
:param int output_dim: dimension of the output vector. If set to 0, there
is no final linear layer.
:param hidden_sizes: shape of MLP passed in as a list, not incluing
input_dim and output_dim.
:param norm_layer: use which normalization before activation, e.g.,
``nn.LayerNorm`` and ``nn.BatchNorm1d``, defaults to no normalization.
You can also pass a list of normalization modules with the same length
of hidden_sizes, to use different normalization module in different
layers. Default to no normalization.
:param activation: which activation to use after each layer, can be both
the same actvition for all layers if passed in nn.Module, or different
activation for different Modules if passed in a list. Default to
nn.ReLU.
"""
def __init__(
self,
input_dim: int,
output_dim: int = 0,
hidden_sizes: Sequence[int] = (),
norm_layer: Optional[Union[ModuleType, Sequence[ModuleType]]] = None,
activation: Optional[Union[ModuleType, Sequence[ModuleType]]]
= nn.ReLU,
device: Optional[Union[str, int, torch.device]] = None,
) -> None:
super().__init__()
self.device = device
if norm_layer:
if isinstance(norm_layer, list):
assert len(norm_layer) == len(hidden_sizes)
norm_layer_list = norm_layer
else:
norm_layer_list = [
norm_layer for _ in range(len(hidden_sizes))]
else:
norm_layer_list = [None] * len(hidden_sizes)
if activation:
if isinstance(activation, list):
assert len(activation) == len(hidden_sizes)
activation_list = activation
else:
activation_list = [
activation for _ in range(len(hidden_sizes))]
else:
activation_list = [None] * len(hidden_sizes)
hidden_sizes = [input_dim] + list(hidden_sizes)
model = []
for in_dim, out_dim, norm, activ in zip(
hidden_sizes[:-1], hidden_sizes[1:],
norm_layer_list, activation_list):
model += miniblock(in_dim, out_dim, norm, activ)
if output_dim > 0:
model += [nn.Linear(hidden_sizes[-1], output_dim)]
self.output_dim = output_dim or hidden_sizes[-1]
self.model = nn.Sequential(*model)
def forward(
self, x: Union[np.ndarray, torch.Tensor]
) -> torch.Tensor:
x = torch.as_tensor(
x, device=self.device, dtype=torch.float32) # type: ignore
return self.model(x.flatten(1))
class Net(nn.Module):
"""Wrapper of MLP to support more specific DRL usage.
For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
:param state_shape: int or a sequence of int of the shape of state.
:param action_shape: int or a sequence of int of the shape of action.
:param hidden_sizes: shape of MLP passed in as a list.
:param norm_layer: use which normalization before activation, e.g.,
``nn.LayerNorm`` and ``nn.BatchNorm1d``, defaults to no normalization.
You can also pass a list of normalization modules with the same length
of hidden_sizes, to use different normalization module in different
layers. Default to no normalization.
:param activation: which activation to use after each layer, can be both
the same actvition for all layers if passed in nn.Module, or different
activation for different Modules if passed in a list. Default to
nn.ReLU.
:param device: specify the device when the network actually runs. Default
to "cpu".
:param bool softmax: whether to apply a softmax layer over the last layer's
output.
:param bool concat: whether the input shape is concatenated by state_shape
and action_shape. If it is True, ``action_shape`` is not the output
shape, but affects the input shape only.
:param int num_atoms: in order to expand to the net of distributional RL,
defaults to 1 (not use).
:param bool dueling_param: whether to use dueling network to calculate Q
values (for Dueling DQN). If you want to use dueling option, you should
pass a tuple of two dict (first for Q and second for V) stating
self-defined arguments as stated in
class:`~tianshou.utils.net.common.MLP`. Defaults to None.
.. seealso::
Please refer to :class:`~tianshou.utils.net.common.MLP` for more
detailed explanation on the usage of activation, norm_layer, etc.
You can also refer to :class:`~tianshou.utils.net.continuous.Actor`,
:class:`~tianshou.utils.net.continuous.Critic`, etc, to see how it's
suggested be used.
"""
def __init__(
self,
state_shape: Union[int, Sequence[int]],
action_shape: Optional[Union[int, Sequence[int]]] = 0,
hidden_sizes: Sequence[int] = (),
norm_layer: Optional[ModuleType] = None,
activation: Optional[ModuleType] = nn.ReLU,
device: Union[str, int, torch.device] = "cpu",
softmax: bool = False,
concat: bool = False,
num_atoms: int = 1,
dueling_param: Optional[Tuple[Dict[str, Any], Dict[str, Any]]] = None,
) -> None:
super().__init__()
self.device = device
self.softmax = softmax
self.num_atoms = num_atoms
input_dim = np.prod(state_shape)
action_dim = np.prod(action_shape) * num_atoms
if concat:
input_dim += action_dim
self.use_dueling = dueling_param is not None
output_dim = action_dim if not self.use_dueling and not concat else 0
self.model = MLP(input_dim, output_dim, hidden_sizes,
norm_layer, activation, device)
self.output_dim = self.model.output_dim
if self.use_dueling: # dueling DQN
q_kwargs, v_kwargs = dueling_param # type: ignore
q_output_dim, v_output_dim = 0, 0
if not concat:
q_output_dim, v_output_dim = action_dim, num_atoms
q_kwargs: Dict[str, Any] = {
**q_kwargs, "input_dim": self.output_dim,
"output_dim": q_output_dim}
v_kwargs: Dict[str, Any] = {
**v_kwargs, "input_dim": self.output_dim,
"output_dim": v_output_dim}
self.Q, self.V = MLP(**q_kwargs), MLP(**v_kwargs)
self.output_dim = self.Q.output_dim
def forward(
self,
s: Union[np.ndarray, torch.Tensor],
state: Optional[Any] = None,
info: Dict[str, Any] = {},
) -> Tuple[torch.Tensor, Any]:
"""Mapping: s -> flatten (inside MLP)-> logits."""
logits = self.model(s)
bsz = logits.shape[0]
if self.use_dueling: # Dueling DQN
q, v = self.Q(logits), self.V(logits)
if self.num_atoms > 1:
q = q.view(bsz, -1, self.num_atoms)
v = v.view(bsz, -1, self.num_atoms)
logits = q - q.mean(dim=1, keepdim=True) + v
elif self.num_atoms > 1:
logits = logits.view(bsz, -1, self.num_atoms)
if self.softmax:
logits = torch.softmax(logits, dim=-1)
return logits, state
class Recurrent(nn.Module):
"""Simple Recurrent network based on LSTM.
For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(
self,
layer_num: int,
state_shape: Union[int, Sequence[int]],
action_shape: Union[int, Sequence[int]],
device: Union[str, int, torch.device] = "cpu",
hidden_layer_size: int = 128,
) -> None:
super().__init__()
self.device = device
self.nn = nn.LSTM(
input_size=hidden_layer_size,
hidden_size=hidden_layer_size,
num_layers=layer_num,
batch_first=True,
)
self.fc1 = nn.Linear(np.prod(state_shape), hidden_layer_size)
self.fc2 = nn.Linear(hidden_layer_size, np.prod(action_shape))
def forward(
self,
s: Union[np.ndarray, torch.Tensor],
state: Optional[Dict[str, torch.Tensor]] = None,
info: Dict[str, Any] = {},
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
"""Mapping: s -> flatten -> logits.
In the evaluation mode, s should be with shape ``[bsz, dim]``; in the
training mode, s should be with shape ``[bsz, len, dim]``. See the code
and comment for more detail.
"""
s = torch.as_tensor(
s, device=self.device, dtype=torch.float32) # type: ignore
# s [bsz, len, dim] (training) or [bsz, dim] (evaluation)
# In short, the tensor's shape in training phase is longer than which
# in evaluation phase.
if len(s.shape) == 2:
s = s.unsqueeze(-2)
s = self.fc1(s)
self.nn.flatten_parameters()
if state is None:
s, (h, c) = self.nn(s)
else:
# we store the stack data in [bsz, len, ...] format
# but pytorch rnn needs [len, bsz, ...]
s, (h, c) = self.nn(s, (state["h"].transpose(0, 1).contiguous(),
state["c"].transpose(0, 1).contiguous()))
s = self.fc2(s[:, -1])
# please ensure the first dim is batch size: [bsz, len, ...]
return s, {"h": h.transpose(0, 1).detach(),
"c": c.transpose(0, 1).detach()}