Tianshou/examples/mujoco/mujoco_redq.py
Yi Su dd16818ce4
implement REDQ based on original contribution by @Jimenius (#623)
Co-authored-by: Minhui Li
 <limh@lamda.nju.edu.cn>
2022-05-01 00:06:00 +08:00

193 lines
6.8 KiB
Python
Executable File

#!/usr/bin/env python3
import argparse
import datetime
import os
import pprint
import gym
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, ReplayBuffer, VectorReplayBuffer
from tianshou.env import SubprocVectorEnv
from tianshou.policy import REDQPolicy
from tianshou.trainer import offpolicy_trainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import EnsembleLinear, Net
from tianshou.utils.net.continuous import ActorProb, Critic
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='Ant-v3')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--buffer-size', type=int, default=1000000)
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[256, 256])
parser.add_argument('--ensemble-size', type=int, default=10)
parser.add_argument('--subset-size', type=int, default=2)
parser.add_argument('--actor-lr', type=float, default=1e-3)
parser.add_argument('--critic-lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--tau', type=float, default=0.005)
parser.add_argument('--alpha', type=float, default=0.2)
parser.add_argument('--auto-alpha', default=False, action='store_true')
parser.add_argument('--alpha-lr', type=float, default=3e-4)
parser.add_argument("--start-timesteps", type=int, default=10000)
parser.add_argument('--epoch', type=int, default=200)
parser.add_argument('--step-per-epoch', type=int, default=5000)
parser.add_argument('--step-per-collect', type=int, default=1)
parser.add_argument('--update-per-step', type=int, default=20)
parser.add_argument('--n-step', type=int, default=1)
parser.add_argument('--batch-size', type=int, default=256)
parser.add_argument(
'--target-mode', type=str, choices=('min', 'mean'), default='min'
)
parser.add_argument('--training-num', type=int, default=1)
parser.add_argument('--test-num', type=int, default=10)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument(
'--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
)
parser.add_argument('--resume-path', type=str, default=None)
parser.add_argument(
'--watch',
default=False,
action='store_true',
help='watch the play of pre-trained policy only'
)
return parser.parse_args()
def test_redq(args=get_args()):
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
print("Action range:", np.min(env.action_space.low), np.max(env.action_space.high))
# train_envs = gym.make(args.task)
if args.training_num > 1:
train_envs = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)]
)
else:
train_envs = gym.make(args.task)
# test_envs = gym.make(args.task)
test_envs = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)]
)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net_a = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
actor = ActorProb(
net_a,
args.action_shape,
max_action=args.max_action,
device=args.device,
unbounded=True,
conditioned_sigma=True
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
def linear(x, y):
return EnsembleLinear(args.ensemble_size, x, y)
net_c = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True,
device=args.device,
linear_layer=linear,
)
critics = Critic(
net_c,
device=args.device,
linear_layer=linear,
flatten_input=False,
).to(args.device)
critics_optim = torch.optim.Adam(critics.parameters(), lr=args.critic_lr)
if args.auto_alpha:
target_entropy = -np.prod(env.action_space.shape)
log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
args.alpha = (target_entropy, log_alpha, alpha_optim)
policy = REDQPolicy(
actor,
actor_optim,
critics,
critics_optim,
args.ensemble_size,
args.subset_size,
tau=args.tau,
gamma=args.gamma,
alpha=args.alpha,
estimation_step=args.n_step,
actor_delay=args.update_per_step,
target_mode=args.target_mode,
action_space=env.action_space,
)
# load a previous policy
if args.resume_path:
policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
print("Loaded agent from: ", args.resume_path)
# collector
if args.training_num > 1:
buffer = VectorReplayBuffer(args.buffer_size, len(train_envs))
else:
buffer = ReplayBuffer(args.buffer_size)
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
test_collector = Collector(policy, test_envs)
train_collector.collect(n_step=args.start_timesteps, random=True)
# log
t0 = datetime.datetime.now().strftime("%m%d_%H%M%S")
log_file = f'seed_{args.seed}_{t0}-{args.task.replace("-", "_")}_redq'
log_path = os.path.join(args.logdir, args.task, 'redq', log_file)
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
logger = TensorboardLogger(writer)
def save_best_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
if not args.watch:
# trainer
result = offpolicy_trainer(
policy,
train_collector,
test_collector,
args.epoch,
args.step_per_epoch,
args.step_per_collect,
args.test_num,
args.batch_size,
save_best_fn=save_best_fn,
logger=logger,
update_per_step=args.update_per_step,
test_in_train=False
)
pprint.pprint(result)
# Let's watch its performance!
policy.eval()
test_envs.seed(args.seed)
test_collector.reset()
result = test_collector.collect(n_episode=args.test_num, render=args.render)
print(f'Final reward: {result["rews"].mean()}, length: {result["lens"].mean()}')
if __name__ == '__main__':
test_redq()